Metamath Proof Explorer


Theorem rabsnel

Description: Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by Thierry Arnoux, 15-Sep-2018)

Ref Expression
Hypothesis rabsnel.1
|- B e. _V
Assertion rabsnel
|- ( { x e. A | ph } = { B } -> B e. A )

Proof

Step Hyp Ref Expression
1 rabsnel.1
 |-  B e. _V
2 1 snid
 |-  B e. { B }
3 eleq2
 |-  ( { x e. A | ph } = { B } -> ( B e. { x e. A | ph } <-> B e. { B } ) )
4 2 3 mpbiri
 |-  ( { x e. A | ph } = { B } -> B e. { x e. A | ph } )
5 elrabi
 |-  ( B e. { x e. A | ph } -> B e. A )
6 4 5 syl
 |-  ( { x e. A | ph } = { B } -> B e. A )