Description: Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006) (Revised by Mario Carneiro, 23-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rabsneu | |- ( ( A e. V /\ { x e. B | ph } = { A } ) -> E! x e. B ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | |- { x e. B | ph } = { x | ( x e. B /\ ph ) } |
|
| 2 | 1 | eqeq1i | |- ( { x e. B | ph } = { A } <-> { x | ( x e. B /\ ph ) } = { A } ) |
| 3 | absneu | |- ( ( A e. V /\ { x | ( x e. B /\ ph ) } = { A } ) -> E! x ( x e. B /\ ph ) ) |
|
| 4 | 2 3 | sylan2b | |- ( ( A e. V /\ { x e. B | ph } = { A } ) -> E! x ( x e. B /\ ph ) ) |
| 5 | df-reu | |- ( E! x e. B ph <-> E! x ( x e. B /\ ph ) ) |
|
| 6 | 4 5 | sylibr | |- ( ( A e. V /\ { x e. B | ph } = { A } ) -> E! x e. B ph ) |