Metamath Proof Explorer


Theorem rabsneu

Description: Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006) (Revised by Mario Carneiro, 23-Dec-2016)

Ref Expression
Assertion rabsneu
|- ( ( A e. V /\ { x e. B | ph } = { A } ) -> E! x e. B ph )

Proof

Step Hyp Ref Expression
1 df-rab
 |-  { x e. B | ph } = { x | ( x e. B /\ ph ) }
2 1 eqeq1i
 |-  ( { x e. B | ph } = { A } <-> { x | ( x e. B /\ ph ) } = { A } )
3 absneu
 |-  ( ( A e. V /\ { x | ( x e. B /\ ph ) } = { A } ) -> E! x ( x e. B /\ ph ) )
4 2 3 sylan2b
 |-  ( ( A e. V /\ { x e. B | ph } = { A } ) -> E! x ( x e. B /\ ph ) )
5 df-reu
 |-  ( E! x e. B ph <-> E! x ( x e. B /\ ph ) )
6 4 5 sylibr
 |-  ( ( A e. V /\ { x e. B | ph } = { A } ) -> E! x e. B ph )