| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elsni |
|- ( x e. { A } -> x = A ) |
| 2 |
|
sbceq1a |
|- ( x = A -> ( ph <-> [. A / x ]. ph ) ) |
| 3 |
2
|
biimpd |
|- ( x = A -> ( ph -> [. A / x ]. ph ) ) |
| 4 |
1 3
|
syl |
|- ( x e. { A } -> ( ph -> [. A / x ]. ph ) ) |
| 5 |
4
|
imdistani |
|- ( ( x e. { A } /\ ph ) -> ( x e. { A } /\ [. A / x ]. ph ) ) |
| 6 |
5
|
orcd |
|- ( ( x e. { A } /\ ph ) -> ( ( x e. { A } /\ [. A / x ]. ph ) \/ ( x e. (/) /\ -. [. A / x ]. ph ) ) ) |
| 7 |
2
|
biimprd |
|- ( x = A -> ( [. A / x ]. ph -> ph ) ) |
| 8 |
1 7
|
syl |
|- ( x e. { A } -> ( [. A / x ]. ph -> ph ) ) |
| 9 |
8
|
imdistani |
|- ( ( x e. { A } /\ [. A / x ]. ph ) -> ( x e. { A } /\ ph ) ) |
| 10 |
|
noel |
|- -. x e. (/) |
| 11 |
10
|
pm2.21i |
|- ( x e. (/) -> ( x e. { A } /\ ph ) ) |
| 12 |
11
|
adantr |
|- ( ( x e. (/) /\ -. [. A / x ]. ph ) -> ( x e. { A } /\ ph ) ) |
| 13 |
9 12
|
jaoi |
|- ( ( ( x e. { A } /\ [. A / x ]. ph ) \/ ( x e. (/) /\ -. [. A / x ]. ph ) ) -> ( x e. { A } /\ ph ) ) |
| 14 |
6 13
|
impbii |
|- ( ( x e. { A } /\ ph ) <-> ( ( x e. { A } /\ [. A / x ]. ph ) \/ ( x e. (/) /\ -. [. A / x ]. ph ) ) ) |
| 15 |
14
|
abbii |
|- { x | ( x e. { A } /\ ph ) } = { x | ( ( x e. { A } /\ [. A / x ]. ph ) \/ ( x e. (/) /\ -. [. A / x ]. ph ) ) } |
| 16 |
|
nfv |
|- F/ y ( ( x e. { A } /\ [. A / x ]. ph ) \/ ( x e. (/) /\ -. [. A / x ]. ph ) ) |
| 17 |
|
nfv |
|- F/ x y e. { A } |
| 18 |
|
nfsbc1v |
|- F/ x [. A / x ]. ph |
| 19 |
17 18
|
nfan |
|- F/ x ( y e. { A } /\ [. A / x ]. ph ) |
| 20 |
|
nfv |
|- F/ x y e. (/) |
| 21 |
18
|
nfn |
|- F/ x -. [. A / x ]. ph |
| 22 |
20 21
|
nfan |
|- F/ x ( y e. (/) /\ -. [. A / x ]. ph ) |
| 23 |
19 22
|
nfor |
|- F/ x ( ( y e. { A } /\ [. A / x ]. ph ) \/ ( y e. (/) /\ -. [. A / x ]. ph ) ) |
| 24 |
|
eleq1w |
|- ( x = y -> ( x e. { A } <-> y e. { A } ) ) |
| 25 |
24
|
anbi1d |
|- ( x = y -> ( ( x e. { A } /\ [. A / x ]. ph ) <-> ( y e. { A } /\ [. A / x ]. ph ) ) ) |
| 26 |
|
eleq1w |
|- ( x = y -> ( x e. (/) <-> y e. (/) ) ) |
| 27 |
26
|
anbi1d |
|- ( x = y -> ( ( x e. (/) /\ -. [. A / x ]. ph ) <-> ( y e. (/) /\ -. [. A / x ]. ph ) ) ) |
| 28 |
25 27
|
orbi12d |
|- ( x = y -> ( ( ( x e. { A } /\ [. A / x ]. ph ) \/ ( x e. (/) /\ -. [. A / x ]. ph ) ) <-> ( ( y e. { A } /\ [. A / x ]. ph ) \/ ( y e. (/) /\ -. [. A / x ]. ph ) ) ) ) |
| 29 |
16 23 28
|
cbvabw |
|- { x | ( ( x e. { A } /\ [. A / x ]. ph ) \/ ( x e. (/) /\ -. [. A / x ]. ph ) ) } = { y | ( ( y e. { A } /\ [. A / x ]. ph ) \/ ( y e. (/) /\ -. [. A / x ]. ph ) ) } |
| 30 |
15 29
|
eqtri |
|- { x | ( x e. { A } /\ ph ) } = { y | ( ( y e. { A } /\ [. A / x ]. ph ) \/ ( y e. (/) /\ -. [. A / x ]. ph ) ) } |
| 31 |
|
df-rab |
|- { x e. { A } | ph } = { x | ( x e. { A } /\ ph ) } |
| 32 |
|
df-if |
|- if ( [. A / x ]. ph , { A } , (/) ) = { y | ( ( y e. { A } /\ [. A / x ]. ph ) \/ ( y e. (/) /\ -. [. A / x ]. ph ) ) } |
| 33 |
30 31 32
|
3eqtr4i |
|- { x e. { A } | ph } = if ( [. A / x ]. ph , { A } , (/) ) |