Metamath Proof Explorer


Theorem rabss2

Description: Subclass law for restricted abstraction. (Contributed by NM, 18-Dec-2004) (Proof shortened by Andrew Salmon, 26-Jun-2011) Avoid axioms. (Revised by TM, 1-Feb-2026)

Ref Expression
Assertion rabss2
|- ( A C_ B -> { x e. A | ph } C_ { x e. B | ph } )

Proof

Step Hyp Ref Expression
1 ssel
 |-  ( A C_ B -> ( x e. A -> x e. B ) )
2 1 anim1d
 |-  ( A C_ B -> ( ( x e. A /\ ph ) -> ( x e. B /\ ph ) ) )
3 2 ss2abdv
 |-  ( A C_ B -> { x | ( x e. A /\ ph ) } C_ { x | ( x e. B /\ ph ) } )
4 df-rab
 |-  { x e. A | ph } = { x | ( x e. A /\ ph ) }
5 df-rab
 |-  { x e. B | ph } = { x | ( x e. B /\ ph ) }
6 3 4 5 3sstr4g
 |-  ( A C_ B -> { x e. A | ph } C_ { x e. B | ph } )