Description: Subclass law for restricted abstraction. (Contributed by NM, 18-Dec-2004) (Proof shortened by Andrew Salmon, 26-Jun-2011) Avoid axioms. (Revised by TM, 1-Feb-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rabss2 | |- ( A C_ B -> { x e. A | ph } C_ { x e. B | ph } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel | |- ( A C_ B -> ( x e. A -> x e. B ) ) |
|
| 2 | 1 | anim1d | |- ( A C_ B -> ( ( x e. A /\ ph ) -> ( x e. B /\ ph ) ) ) |
| 3 | 2 | ss2abdv | |- ( A C_ B -> { x | ( x e. A /\ ph ) } C_ { x | ( x e. B /\ ph ) } ) |
| 4 | df-rab | |- { x e. A | ph } = { x | ( x e. A /\ ph ) } |
|
| 5 | df-rab | |- { x e. B | ph } = { x | ( x e. B /\ ph ) } |
|
| 6 | 3 4 5 | 3sstr4g | |- ( A C_ B -> { x e. A | ph } C_ { x e. B | ph } ) |