Metamath Proof Explorer


Theorem rabssab

Description: A restricted class is a subclass of the corresponding unrestricted class. (Contributed by Mario Carneiro, 23-Dec-2016)

Ref Expression
Assertion rabssab
|- { x e. A | ph } C_ { x | ph }

Proof

Step Hyp Ref Expression
1 df-rab
 |-  { x e. A | ph } = { x | ( x e. A /\ ph ) }
2 simpr
 |-  ( ( x e. A /\ ph ) -> ph )
3 2 ss2abi
 |-  { x | ( x e. A /\ ph ) } C_ { x | ph }
4 1 3 eqsstri
 |-  { x e. A | ph } C_ { x | ph }