Metamath Proof Explorer


Theorem rabssd

Description: Restricted class abstraction in a subclass relationship. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses rabssd.1
|- F/ x ph
rabssd.2
|- F/_ x B
rabssd.3
|- ( ( ph /\ x e. A /\ ch ) -> x e. B )
Assertion rabssd
|- ( ph -> { x e. A | ch } C_ B )

Proof

Step Hyp Ref Expression
1 rabssd.1
 |-  F/ x ph
2 rabssd.2
 |-  F/_ x B
3 rabssd.3
 |-  ( ( ph /\ x e. A /\ ch ) -> x e. B )
4 3 3exp
 |-  ( ph -> ( x e. A -> ( ch -> x e. B ) ) )
5 1 4 ralrimi
 |-  ( ph -> A. x e. A ( ch -> x e. B ) )
6 2 rabssf
 |-  ( { x e. A | ch } C_ B <-> A. x e. A ( ch -> x e. B ) )
7 5 6 sylibr
 |-  ( ph -> { x e. A | ch } C_ B )