Metamath Proof Explorer


Theorem rabssdv

Description: Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 2-Feb-2015)

Ref Expression
Hypothesis rabssdv.1
|- ( ( ph /\ x e. A /\ ps ) -> x e. B )
Assertion rabssdv
|- ( ph -> { x e. A | ps } C_ B )

Proof

Step Hyp Ref Expression
1 rabssdv.1
 |-  ( ( ph /\ x e. A /\ ps ) -> x e. B )
2 1 3exp
 |-  ( ph -> ( x e. A -> ( ps -> x e. B ) ) )
3 2 ralrimiv
 |-  ( ph -> A. x e. A ( ps -> x e. B ) )
4 rabss
 |-  ( { x e. A | ps } C_ B <-> A. x e. A ( ps -> x e. B ) )
5 3 4 sylibr
 |-  ( ph -> { x e. A | ps } C_ B )