Description: Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 2-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rabssdv.1 | |- ( ( ph /\ x e. A /\ ps ) -> x e. B ) |
|
Assertion | rabssdv | |- ( ph -> { x e. A | ps } C_ B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabssdv.1 | |- ( ( ph /\ x e. A /\ ps ) -> x e. B ) |
|
2 | 1 | 3exp | |- ( ph -> ( x e. A -> ( ps -> x e. B ) ) ) |
3 | 2 | ralrimiv | |- ( ph -> A. x e. A ( ps -> x e. B ) ) |
4 | rabss | |- ( { x e. A | ps } C_ B <-> A. x e. A ( ps -> x e. B ) ) |
|
5 | 3 4 | sylibr | |- ( ph -> { x e. A | ps } C_ B ) |