Step |
Hyp |
Ref |
Expression |
1 |
|
rabssrabd.1 |
|- ( ph -> A C_ B ) |
2 |
|
rabssrabd.2 |
|- ( ( ph /\ ps /\ x e. A ) -> ch ) |
3 |
|
3anan32 |
|- ( ( ph /\ ps /\ x e. A ) <-> ( ( ph /\ x e. A ) /\ ps ) ) |
4 |
3 2
|
sylbir |
|- ( ( ( ph /\ x e. A ) /\ ps ) -> ch ) |
5 |
4
|
ex |
|- ( ( ph /\ x e. A ) -> ( ps -> ch ) ) |
6 |
5
|
ss2rabdv |
|- ( ph -> { x e. A | ps } C_ { x e. A | ch } ) |
7 |
|
rabss2 |
|- ( A C_ B -> { x e. A | ch } C_ { x e. B | ch } ) |
8 |
1 7
|
syl |
|- ( ph -> { x e. A | ch } C_ { x e. B | ch } ) |
9 |
6 8
|
sstrd |
|- ( ph -> { x e. A | ps } C_ { x e. B | ch } ) |