Metamath Proof Explorer


Theorem rabsssn

Description: Conditions for a restricted class abstraction to be a subset of a singleton, i.e. to be a singleton or the empty set. (Contributed by AV, 18-Apr-2019)

Ref Expression
Assertion rabsssn
|- ( { x e. V | ph } C_ { X } <-> A. x e. V ( ph -> x = X ) )

Proof

Step Hyp Ref Expression
1 df-rab
 |-  { x e. V | ph } = { x | ( x e. V /\ ph ) }
2 df-sn
 |-  { X } = { x | x = X }
3 1 2 sseq12i
 |-  ( { x e. V | ph } C_ { X } <-> { x | ( x e. V /\ ph ) } C_ { x | x = X } )
4 ss2ab
 |-  ( { x | ( x e. V /\ ph ) } C_ { x | x = X } <-> A. x ( ( x e. V /\ ph ) -> x = X ) )
5 impexp
 |-  ( ( ( x e. V /\ ph ) -> x = X ) <-> ( x e. V -> ( ph -> x = X ) ) )
6 5 albii
 |-  ( A. x ( ( x e. V /\ ph ) -> x = X ) <-> A. x ( x e. V -> ( ph -> x = X ) ) )
7 df-ral
 |-  ( A. x e. V ( ph -> x = X ) <-> A. x ( x e. V -> ( ph -> x = X ) ) )
8 6 7 bitr4i
 |-  ( A. x ( ( x e. V /\ ph ) -> x = X ) <-> A. x e. V ( ph -> x = X ) )
9 3 4 8 3bitri
 |-  ( { x e. V | ph } C_ { X } <-> A. x e. V ( ph -> x = X ) )