Metamath Proof Explorer


Theorem rabtru

Description: Abstract builder using the constant wff T. . (Contributed by Thierry Arnoux, 4-May-2020)

Ref Expression
Hypothesis rabtru.1
|- F/_ x A
Assertion rabtru
|- { x e. A | T. } = A

Proof

Step Hyp Ref Expression
1 rabtru.1
 |-  F/_ x A
2 tru
 |-  T.
3 nfcv
 |-  F/_ x y
4 nftru
 |-  F/ x T.
5 biidd
 |-  ( x = y -> ( T. <-> T. ) )
6 3 1 4 5 elrabf
 |-  ( y e. { x e. A | T. } <-> ( y e. A /\ T. ) )
7 2 6 mpbiran2
 |-  ( y e. { x e. A | T. } <-> y e. A )
8 7 eqriv
 |-  { x e. A | T. } = A