Description: Abstract builder using the constant wff T. . (Contributed by Thierry Arnoux, 4-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rabtru.1 | |- F/_ x A |
|
| Assertion | rabtru | |- { x e. A | T. } = A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabtru.1 | |- F/_ x A |
|
| 2 | tru | |- T. |
|
| 3 | nfcv | |- F/_ x y |
|
| 4 | nftru | |- F/ x T. |
|
| 5 | biidd | |- ( x = y -> ( T. <-> T. ) ) |
|
| 6 | 3 1 4 5 | elrabf | |- ( y e. { x e. A | T. } <-> ( y e. A /\ T. ) ) |
| 7 | 2 6 | mpbiran2 | |- ( y e. { x e. A | T. } <-> y e. A ) |
| 8 | 7 | eqriv | |- { x e. A | T. } = A |