Description: Abstract builder using the constant wff T. . (Contributed by Thierry Arnoux, 4-May-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rabtru.1 | |- F/_ x A |
|
Assertion | rabtru | |- { x e. A | T. } = A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabtru.1 | |- F/_ x A |
|
2 | tru | |- T. |
|
3 | nfcv | |- F/_ x y |
|
4 | nftru | |- F/ x T. |
|
5 | biidd | |- ( x = y -> ( T. <-> T. ) ) |
|
6 | 3 1 4 5 | elrabf | |- ( y e. { x e. A | T. } <-> ( y e. A /\ T. ) ) |
7 | 2 6 | mpbiran2 | |- ( y e. { x e. A | T. } <-> y e. A ) |
8 | 7 | eqriv | |- { x e. A | T. } = A |