Metamath Proof Explorer


Theorem rabxm

Description: Law of excluded middle, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011)

Ref Expression
Assertion rabxm
|- A = ( { x e. A | ph } u. { x e. A | -. ph } )

Proof

Step Hyp Ref Expression
1 rabid2
 |-  ( A = { x e. A | ( ph \/ -. ph ) } <-> A. x e. A ( ph \/ -. ph ) )
2 exmidd
 |-  ( x e. A -> ( ph \/ -. ph ) )
3 1 2 mprgbir
 |-  A = { x e. A | ( ph \/ -. ph ) }
4 unrab
 |-  ( { x e. A | ph } u. { x e. A | -. ph } ) = { x e. A | ( ph \/ -. ph ) }
5 3 4 eqtr4i
 |-  A = ( { x e. A | ph } u. { x e. A | -. ph } )