Description: Law of excluded middle, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | rabxm | |- A = ( { x e. A | ph } u. { x e. A | -. ph } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabid2 | |- ( A = { x e. A | ( ph \/ -. ph ) } <-> A. x e. A ( ph \/ -. ph ) ) |
|
2 | exmidd | |- ( x e. A -> ( ph \/ -. ph ) ) |
|
3 | 1 2 | mprgbir | |- A = { x e. A | ( ph \/ -. ph ) } |
4 | unrab | |- ( { x e. A | ph } u. { x e. A | -. ph } ) = { x e. A | ( ph \/ -. ph ) } |
|
5 | 3 4 | eqtr4i | |- A = ( { x e. A | ph } u. { x e. A | -. ph } ) |