Step |
Hyp |
Ref |
Expression |
1 |
|
pser.g |
|- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
2 |
|
radcnv.a |
|- ( ph -> A : NN0 --> CC ) |
3 |
|
radcnv.r |
|- R = sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) |
4 |
|
radcnvle.x |
|- ( ph -> X e. CC ) |
5 |
|
radcnvle.a |
|- ( ph -> seq 0 ( + , ( G ` X ) ) e. dom ~~> ) |
6 |
|
ressxr |
|- RR C_ RR* |
7 |
4
|
abscld |
|- ( ph -> ( abs ` X ) e. RR ) |
8 |
6 7
|
sselid |
|- ( ph -> ( abs ` X ) e. RR* ) |
9 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
10 |
1 2 3
|
radcnvcl |
|- ( ph -> R e. ( 0 [,] +oo ) ) |
11 |
9 10
|
sselid |
|- ( ph -> R e. RR* ) |
12 |
|
simpr |
|- ( ( ph /\ R < ( abs ` X ) ) -> R < ( abs ` X ) ) |
13 |
11
|
adantr |
|- ( ( ph /\ R < ( abs ` X ) ) -> R e. RR* ) |
14 |
7
|
adantr |
|- ( ( ph /\ R < ( abs ` X ) ) -> ( abs ` X ) e. RR ) |
15 |
|
0xr |
|- 0 e. RR* |
16 |
|
pnfxr |
|- +oo e. RR* |
17 |
|
elicc1 |
|- ( ( 0 e. RR* /\ +oo e. RR* ) -> ( R e. ( 0 [,] +oo ) <-> ( R e. RR* /\ 0 <_ R /\ R <_ +oo ) ) ) |
18 |
15 16 17
|
mp2an |
|- ( R e. ( 0 [,] +oo ) <-> ( R e. RR* /\ 0 <_ R /\ R <_ +oo ) ) |
19 |
10 18
|
sylib |
|- ( ph -> ( R e. RR* /\ 0 <_ R /\ R <_ +oo ) ) |
20 |
19
|
simp2d |
|- ( ph -> 0 <_ R ) |
21 |
|
ge0gtmnf |
|- ( ( R e. RR* /\ 0 <_ R ) -> -oo < R ) |
22 |
11 20 21
|
syl2anc |
|- ( ph -> -oo < R ) |
23 |
22
|
adantr |
|- ( ( ph /\ R < ( abs ` X ) ) -> -oo < R ) |
24 |
8
|
adantr |
|- ( ( ph /\ R < ( abs ` X ) ) -> ( abs ` X ) e. RR* ) |
25 |
13 24 12
|
xrltled |
|- ( ( ph /\ R < ( abs ` X ) ) -> R <_ ( abs ` X ) ) |
26 |
|
xrre |
|- ( ( ( R e. RR* /\ ( abs ` X ) e. RR ) /\ ( -oo < R /\ R <_ ( abs ` X ) ) ) -> R e. RR ) |
27 |
13 14 23 25 26
|
syl22anc |
|- ( ( ph /\ R < ( abs ` X ) ) -> R e. RR ) |
28 |
|
avglt1 |
|- ( ( R e. RR /\ ( abs ` X ) e. RR ) -> ( R < ( abs ` X ) <-> R < ( ( R + ( abs ` X ) ) / 2 ) ) ) |
29 |
27 14 28
|
syl2anc |
|- ( ( ph /\ R < ( abs ` X ) ) -> ( R < ( abs ` X ) <-> R < ( ( R + ( abs ` X ) ) / 2 ) ) ) |
30 |
12 29
|
mpbid |
|- ( ( ph /\ R < ( abs ` X ) ) -> R < ( ( R + ( abs ` X ) ) / 2 ) ) |
31 |
27 14
|
readdcld |
|- ( ( ph /\ R < ( abs ` X ) ) -> ( R + ( abs ` X ) ) e. RR ) |
32 |
31
|
rehalfcld |
|- ( ( ph /\ R < ( abs ` X ) ) -> ( ( R + ( abs ` X ) ) / 2 ) e. RR ) |
33 |
|
ssrab2 |
|- { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } C_ RR |
34 |
33 6
|
sstri |
|- { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } C_ RR* |
35 |
2
|
adantr |
|- ( ( ph /\ R < ( abs ` X ) ) -> A : NN0 --> CC ) |
36 |
32
|
recnd |
|- ( ( ph /\ R < ( abs ` X ) ) -> ( ( R + ( abs ` X ) ) / 2 ) e. CC ) |
37 |
4
|
adantr |
|- ( ( ph /\ R < ( abs ` X ) ) -> X e. CC ) |
38 |
|
0red |
|- ( ( ph /\ R < ( abs ` X ) ) -> 0 e. RR ) |
39 |
20
|
adantr |
|- ( ( ph /\ R < ( abs ` X ) ) -> 0 <_ R ) |
40 |
38 27 32 39 30
|
lelttrd |
|- ( ( ph /\ R < ( abs ` X ) ) -> 0 < ( ( R + ( abs ` X ) ) / 2 ) ) |
41 |
38 32 40
|
ltled |
|- ( ( ph /\ R < ( abs ` X ) ) -> 0 <_ ( ( R + ( abs ` X ) ) / 2 ) ) |
42 |
32 41
|
absidd |
|- ( ( ph /\ R < ( abs ` X ) ) -> ( abs ` ( ( R + ( abs ` X ) ) / 2 ) ) = ( ( R + ( abs ` X ) ) / 2 ) ) |
43 |
|
avglt2 |
|- ( ( R e. RR /\ ( abs ` X ) e. RR ) -> ( R < ( abs ` X ) <-> ( ( R + ( abs ` X ) ) / 2 ) < ( abs ` X ) ) ) |
44 |
27 14 43
|
syl2anc |
|- ( ( ph /\ R < ( abs ` X ) ) -> ( R < ( abs ` X ) <-> ( ( R + ( abs ` X ) ) / 2 ) < ( abs ` X ) ) ) |
45 |
12 44
|
mpbid |
|- ( ( ph /\ R < ( abs ` X ) ) -> ( ( R + ( abs ` X ) ) / 2 ) < ( abs ` X ) ) |
46 |
42 45
|
eqbrtrd |
|- ( ( ph /\ R < ( abs ` X ) ) -> ( abs ` ( ( R + ( abs ` X ) ) / 2 ) ) < ( abs ` X ) ) |
47 |
5
|
adantr |
|- ( ( ph /\ R < ( abs ` X ) ) -> seq 0 ( + , ( G ` X ) ) e. dom ~~> ) |
48 |
1 35 36 37 46 47
|
radcnvlem3 |
|- ( ( ph /\ R < ( abs ` X ) ) -> seq 0 ( + , ( G ` ( ( R + ( abs ` X ) ) / 2 ) ) ) e. dom ~~> ) |
49 |
|
fveq2 |
|- ( y = ( ( R + ( abs ` X ) ) / 2 ) -> ( G ` y ) = ( G ` ( ( R + ( abs ` X ) ) / 2 ) ) ) |
50 |
49
|
seqeq3d |
|- ( y = ( ( R + ( abs ` X ) ) / 2 ) -> seq 0 ( + , ( G ` y ) ) = seq 0 ( + , ( G ` ( ( R + ( abs ` X ) ) / 2 ) ) ) ) |
51 |
50
|
eleq1d |
|- ( y = ( ( R + ( abs ` X ) ) / 2 ) -> ( seq 0 ( + , ( G ` y ) ) e. dom ~~> <-> seq 0 ( + , ( G ` ( ( R + ( abs ` X ) ) / 2 ) ) ) e. dom ~~> ) ) |
52 |
|
fveq2 |
|- ( r = y -> ( G ` r ) = ( G ` y ) ) |
53 |
52
|
seqeq3d |
|- ( r = y -> seq 0 ( + , ( G ` r ) ) = seq 0 ( + , ( G ` y ) ) ) |
54 |
53
|
eleq1d |
|- ( r = y -> ( seq 0 ( + , ( G ` r ) ) e. dom ~~> <-> seq 0 ( + , ( G ` y ) ) e. dom ~~> ) ) |
55 |
54
|
cbvrabv |
|- { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } = { y e. RR | seq 0 ( + , ( G ` y ) ) e. dom ~~> } |
56 |
51 55
|
elrab2 |
|- ( ( ( R + ( abs ` X ) ) / 2 ) e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } <-> ( ( ( R + ( abs ` X ) ) / 2 ) e. RR /\ seq 0 ( + , ( G ` ( ( R + ( abs ` X ) ) / 2 ) ) ) e. dom ~~> ) ) |
57 |
32 48 56
|
sylanbrc |
|- ( ( ph /\ R < ( abs ` X ) ) -> ( ( R + ( abs ` X ) ) / 2 ) e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) |
58 |
|
supxrub |
|- ( ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } C_ RR* /\ ( ( R + ( abs ` X ) ) / 2 ) e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) -> ( ( R + ( abs ` X ) ) / 2 ) <_ sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) ) |
59 |
34 57 58
|
sylancr |
|- ( ( ph /\ R < ( abs ` X ) ) -> ( ( R + ( abs ` X ) ) / 2 ) <_ sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) ) |
60 |
59 3
|
breqtrrdi |
|- ( ( ph /\ R < ( abs ` X ) ) -> ( ( R + ( abs ` X ) ) / 2 ) <_ R ) |
61 |
32 27 60
|
lensymd |
|- ( ( ph /\ R < ( abs ` X ) ) -> -. R < ( ( R + ( abs ` X ) ) / 2 ) ) |
62 |
30 61
|
pm2.65da |
|- ( ph -> -. R < ( abs ` X ) ) |
63 |
8 11 62
|
xrnltled |
|- ( ph -> ( abs ` X ) <_ R ) |