| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pser.g |  |-  G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) | 
						
							| 2 |  | radcnv.a |  |-  ( ph -> A : NN0 --> CC ) | 
						
							| 3 |  | radcnv.r |  |-  R = sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) | 
						
							| 4 |  | radcnvle.x |  |-  ( ph -> X e. CC ) | 
						
							| 5 |  | radcnvle.a |  |-  ( ph -> seq 0 ( + , ( G ` X ) ) e. dom ~~> ) | 
						
							| 6 |  | ressxr |  |-  RR C_ RR* | 
						
							| 7 | 4 | abscld |  |-  ( ph -> ( abs ` X ) e. RR ) | 
						
							| 8 | 6 7 | sselid |  |-  ( ph -> ( abs ` X ) e. RR* ) | 
						
							| 9 |  | iccssxr |  |-  ( 0 [,] +oo ) C_ RR* | 
						
							| 10 | 1 2 3 | radcnvcl |  |-  ( ph -> R e. ( 0 [,] +oo ) ) | 
						
							| 11 | 9 10 | sselid |  |-  ( ph -> R e. RR* ) | 
						
							| 12 |  | simpr |  |-  ( ( ph /\ R < ( abs ` X ) ) -> R < ( abs ` X ) ) | 
						
							| 13 | 11 | adantr |  |-  ( ( ph /\ R < ( abs ` X ) ) -> R e. RR* ) | 
						
							| 14 | 7 | adantr |  |-  ( ( ph /\ R < ( abs ` X ) ) -> ( abs ` X ) e. RR ) | 
						
							| 15 |  | 0xr |  |-  0 e. RR* | 
						
							| 16 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 17 |  | elicc1 |  |-  ( ( 0 e. RR* /\ +oo e. RR* ) -> ( R e. ( 0 [,] +oo ) <-> ( R e. RR* /\ 0 <_ R /\ R <_ +oo ) ) ) | 
						
							| 18 | 15 16 17 | mp2an |  |-  ( R e. ( 0 [,] +oo ) <-> ( R e. RR* /\ 0 <_ R /\ R <_ +oo ) ) | 
						
							| 19 | 10 18 | sylib |  |-  ( ph -> ( R e. RR* /\ 0 <_ R /\ R <_ +oo ) ) | 
						
							| 20 | 19 | simp2d |  |-  ( ph -> 0 <_ R ) | 
						
							| 21 |  | ge0gtmnf |  |-  ( ( R e. RR* /\ 0 <_ R ) -> -oo < R ) | 
						
							| 22 | 11 20 21 | syl2anc |  |-  ( ph -> -oo < R ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ph /\ R < ( abs ` X ) ) -> -oo < R ) | 
						
							| 24 | 8 | adantr |  |-  ( ( ph /\ R < ( abs ` X ) ) -> ( abs ` X ) e. RR* ) | 
						
							| 25 | 13 24 12 | xrltled |  |-  ( ( ph /\ R < ( abs ` X ) ) -> R <_ ( abs ` X ) ) | 
						
							| 26 |  | xrre |  |-  ( ( ( R e. RR* /\ ( abs ` X ) e. RR ) /\ ( -oo < R /\ R <_ ( abs ` X ) ) ) -> R e. RR ) | 
						
							| 27 | 13 14 23 25 26 | syl22anc |  |-  ( ( ph /\ R < ( abs ` X ) ) -> R e. RR ) | 
						
							| 28 |  | avglt1 |  |-  ( ( R e. RR /\ ( abs ` X ) e. RR ) -> ( R < ( abs ` X ) <-> R < ( ( R + ( abs ` X ) ) / 2 ) ) ) | 
						
							| 29 | 27 14 28 | syl2anc |  |-  ( ( ph /\ R < ( abs ` X ) ) -> ( R < ( abs ` X ) <-> R < ( ( R + ( abs ` X ) ) / 2 ) ) ) | 
						
							| 30 | 12 29 | mpbid |  |-  ( ( ph /\ R < ( abs ` X ) ) -> R < ( ( R + ( abs ` X ) ) / 2 ) ) | 
						
							| 31 | 27 14 | readdcld |  |-  ( ( ph /\ R < ( abs ` X ) ) -> ( R + ( abs ` X ) ) e. RR ) | 
						
							| 32 | 31 | rehalfcld |  |-  ( ( ph /\ R < ( abs ` X ) ) -> ( ( R + ( abs ` X ) ) / 2 ) e. RR ) | 
						
							| 33 |  | ssrab2 |  |-  { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } C_ RR | 
						
							| 34 | 33 6 | sstri |  |-  { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } C_ RR* | 
						
							| 35 | 2 | adantr |  |-  ( ( ph /\ R < ( abs ` X ) ) -> A : NN0 --> CC ) | 
						
							| 36 | 32 | recnd |  |-  ( ( ph /\ R < ( abs ` X ) ) -> ( ( R + ( abs ` X ) ) / 2 ) e. CC ) | 
						
							| 37 | 4 | adantr |  |-  ( ( ph /\ R < ( abs ` X ) ) -> X e. CC ) | 
						
							| 38 |  | 0red |  |-  ( ( ph /\ R < ( abs ` X ) ) -> 0 e. RR ) | 
						
							| 39 | 20 | adantr |  |-  ( ( ph /\ R < ( abs ` X ) ) -> 0 <_ R ) | 
						
							| 40 | 38 27 32 39 30 | lelttrd |  |-  ( ( ph /\ R < ( abs ` X ) ) -> 0 < ( ( R + ( abs ` X ) ) / 2 ) ) | 
						
							| 41 | 38 32 40 | ltled |  |-  ( ( ph /\ R < ( abs ` X ) ) -> 0 <_ ( ( R + ( abs ` X ) ) / 2 ) ) | 
						
							| 42 | 32 41 | absidd |  |-  ( ( ph /\ R < ( abs ` X ) ) -> ( abs ` ( ( R + ( abs ` X ) ) / 2 ) ) = ( ( R + ( abs ` X ) ) / 2 ) ) | 
						
							| 43 |  | avglt2 |  |-  ( ( R e. RR /\ ( abs ` X ) e. RR ) -> ( R < ( abs ` X ) <-> ( ( R + ( abs ` X ) ) / 2 ) < ( abs ` X ) ) ) | 
						
							| 44 | 27 14 43 | syl2anc |  |-  ( ( ph /\ R < ( abs ` X ) ) -> ( R < ( abs ` X ) <-> ( ( R + ( abs ` X ) ) / 2 ) < ( abs ` X ) ) ) | 
						
							| 45 | 12 44 | mpbid |  |-  ( ( ph /\ R < ( abs ` X ) ) -> ( ( R + ( abs ` X ) ) / 2 ) < ( abs ` X ) ) | 
						
							| 46 | 42 45 | eqbrtrd |  |-  ( ( ph /\ R < ( abs ` X ) ) -> ( abs ` ( ( R + ( abs ` X ) ) / 2 ) ) < ( abs ` X ) ) | 
						
							| 47 | 5 | adantr |  |-  ( ( ph /\ R < ( abs ` X ) ) -> seq 0 ( + , ( G ` X ) ) e. dom ~~> ) | 
						
							| 48 | 1 35 36 37 46 47 | radcnvlem3 |  |-  ( ( ph /\ R < ( abs ` X ) ) -> seq 0 ( + , ( G ` ( ( R + ( abs ` X ) ) / 2 ) ) ) e. dom ~~> ) | 
						
							| 49 |  | fveq2 |  |-  ( y = ( ( R + ( abs ` X ) ) / 2 ) -> ( G ` y ) = ( G ` ( ( R + ( abs ` X ) ) / 2 ) ) ) | 
						
							| 50 | 49 | seqeq3d |  |-  ( y = ( ( R + ( abs ` X ) ) / 2 ) -> seq 0 ( + , ( G ` y ) ) = seq 0 ( + , ( G ` ( ( R + ( abs ` X ) ) / 2 ) ) ) ) | 
						
							| 51 | 50 | eleq1d |  |-  ( y = ( ( R + ( abs ` X ) ) / 2 ) -> ( seq 0 ( + , ( G ` y ) ) e. dom ~~> <-> seq 0 ( + , ( G ` ( ( R + ( abs ` X ) ) / 2 ) ) ) e. dom ~~> ) ) | 
						
							| 52 |  | fveq2 |  |-  ( r = y -> ( G ` r ) = ( G ` y ) ) | 
						
							| 53 | 52 | seqeq3d |  |-  ( r = y -> seq 0 ( + , ( G ` r ) ) = seq 0 ( + , ( G ` y ) ) ) | 
						
							| 54 | 53 | eleq1d |  |-  ( r = y -> ( seq 0 ( + , ( G ` r ) ) e. dom ~~> <-> seq 0 ( + , ( G ` y ) ) e. dom ~~> ) ) | 
						
							| 55 | 54 | cbvrabv |  |-  { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } = { y e. RR | seq 0 ( + , ( G ` y ) ) e. dom ~~> } | 
						
							| 56 | 51 55 | elrab2 |  |-  ( ( ( R + ( abs ` X ) ) / 2 ) e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } <-> ( ( ( R + ( abs ` X ) ) / 2 ) e. RR /\ seq 0 ( + , ( G ` ( ( R + ( abs ` X ) ) / 2 ) ) ) e. dom ~~> ) ) | 
						
							| 57 | 32 48 56 | sylanbrc |  |-  ( ( ph /\ R < ( abs ` X ) ) -> ( ( R + ( abs ` X ) ) / 2 ) e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) | 
						
							| 58 |  | supxrub |  |-  ( ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } C_ RR* /\ ( ( R + ( abs ` X ) ) / 2 ) e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) -> ( ( R + ( abs ` X ) ) / 2 ) <_ sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) ) | 
						
							| 59 | 34 57 58 | sylancr |  |-  ( ( ph /\ R < ( abs ` X ) ) -> ( ( R + ( abs ` X ) ) / 2 ) <_ sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) ) | 
						
							| 60 | 59 3 | breqtrrdi |  |-  ( ( ph /\ R < ( abs ` X ) ) -> ( ( R + ( abs ` X ) ) / 2 ) <_ R ) | 
						
							| 61 | 32 27 60 | lensymd |  |-  ( ( ph /\ R < ( abs ` X ) ) -> -. R < ( ( R + ( abs ` X ) ) / 2 ) ) | 
						
							| 62 | 30 61 | pm2.65da |  |-  ( ph -> -. R < ( abs ` X ) ) | 
						
							| 63 | 8 11 62 | xrnltled |  |-  ( ph -> ( abs ` X ) <_ R ) |