| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pser.g |  |-  G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) | 
						
							| 2 |  | radcnv.a |  |-  ( ph -> A : NN0 --> CC ) | 
						
							| 3 |  | psergf.x |  |-  ( ph -> X e. CC ) | 
						
							| 4 |  | radcnvlem2.y |  |-  ( ph -> Y e. CC ) | 
						
							| 5 |  | radcnvlem2.a |  |-  ( ph -> ( abs ` X ) < ( abs ` Y ) ) | 
						
							| 6 |  | radcnvlem2.c |  |-  ( ph -> seq 0 ( + , ( G ` Y ) ) e. dom ~~> ) | 
						
							| 7 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 8 |  | 0zd |  |-  ( ph -> 0 e. ZZ ) | 
						
							| 9 | 1 2 3 | psergf |  |-  ( ph -> ( G ` X ) : NN0 --> CC ) | 
						
							| 10 |  | fvco3 |  |-  ( ( ( G ` X ) : NN0 --> CC /\ k e. NN0 ) -> ( ( abs o. ( G ` X ) ) ` k ) = ( abs ` ( ( G ` X ) ` k ) ) ) | 
						
							| 11 | 9 10 | sylan |  |-  ( ( ph /\ k e. NN0 ) -> ( ( abs o. ( G ` X ) ) ` k ) = ( abs ` ( ( G ` X ) ` k ) ) ) | 
						
							| 12 | 9 | ffvelcdmda |  |-  ( ( ph /\ k e. NN0 ) -> ( ( G ` X ) ` k ) e. CC ) | 
						
							| 13 | 1 2 3 4 5 6 | radcnvlem2 |  |-  ( ph -> seq 0 ( + , ( abs o. ( G ` X ) ) ) e. dom ~~> ) | 
						
							| 14 | 7 8 11 12 13 | abscvgcvg |  |-  ( ph -> seq 0 ( + , ( G ` X ) ) e. dom ~~> ) |