Step |
Hyp |
Ref |
Expression |
1 |
|
pser.g |
|- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
2 |
|
radcnv.a |
|- ( ph -> A : NN0 --> CC ) |
3 |
|
psergf.x |
|- ( ph -> X e. CC ) |
4 |
|
radcnvlem2.y |
|- ( ph -> Y e. CC ) |
5 |
|
radcnvlem2.a |
|- ( ph -> ( abs ` X ) < ( abs ` Y ) ) |
6 |
|
radcnvlem2.c |
|- ( ph -> seq 0 ( + , ( G ` Y ) ) e. dom ~~> ) |
7 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
8 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
9 |
1 2 3
|
psergf |
|- ( ph -> ( G ` X ) : NN0 --> CC ) |
10 |
|
fvco3 |
|- ( ( ( G ` X ) : NN0 --> CC /\ k e. NN0 ) -> ( ( abs o. ( G ` X ) ) ` k ) = ( abs ` ( ( G ` X ) ` k ) ) ) |
11 |
9 10
|
sylan |
|- ( ( ph /\ k e. NN0 ) -> ( ( abs o. ( G ` X ) ) ` k ) = ( abs ` ( ( G ` X ) ` k ) ) ) |
12 |
9
|
ffvelrnda |
|- ( ( ph /\ k e. NN0 ) -> ( ( G ` X ) ` k ) e. CC ) |
13 |
1 2 3 4 5 6
|
radcnvlem2 |
|- ( ph -> seq 0 ( + , ( abs o. ( G ` X ) ) ) e. dom ~~> ) |
14 |
7 8 11 12 13
|
abscvgcvg |
|- ( ph -> seq 0 ( + , ( G ` X ) ) e. dom ~~> ) |