Step |
Hyp |
Ref |
Expression |
1 |
|
pser.g |
|- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
2 |
|
radcnv.a |
|- ( ph -> A : NN0 --> CC ) |
3 |
|
radcnv.r |
|- R = sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) |
4 |
|
radcnvlt.x |
|- ( ph -> X e. CC ) |
5 |
|
radcnvlt.a |
|- ( ph -> ( abs ` X ) < R ) |
6 |
|
radcnvlt1.h |
|- H = ( m e. NN0 |-> ( m x. ( abs ` ( ( G ` X ) ` m ) ) ) ) |
7 |
|
ressxr |
|- RR C_ RR* |
8 |
4
|
abscld |
|- ( ph -> ( abs ` X ) e. RR ) |
9 |
7 8
|
sselid |
|- ( ph -> ( abs ` X ) e. RR* ) |
10 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
11 |
1 2 3
|
radcnvcl |
|- ( ph -> R e. ( 0 [,] +oo ) ) |
12 |
10 11
|
sselid |
|- ( ph -> R e. RR* ) |
13 |
|
xrltnle |
|- ( ( ( abs ` X ) e. RR* /\ R e. RR* ) -> ( ( abs ` X ) < R <-> -. R <_ ( abs ` X ) ) ) |
14 |
9 12 13
|
syl2anc |
|- ( ph -> ( ( abs ` X ) < R <-> -. R <_ ( abs ` X ) ) ) |
15 |
5 14
|
mpbid |
|- ( ph -> -. R <_ ( abs ` X ) ) |
16 |
3
|
breq1i |
|- ( R <_ ( abs ` X ) <-> sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) <_ ( abs ` X ) ) |
17 |
|
ssrab2 |
|- { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } C_ RR |
18 |
17 7
|
sstri |
|- { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } C_ RR* |
19 |
|
supxrleub |
|- ( ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } C_ RR* /\ ( abs ` X ) e. RR* ) -> ( sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) <_ ( abs ` X ) <-> A. s e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } s <_ ( abs ` X ) ) ) |
20 |
18 9 19
|
sylancr |
|- ( ph -> ( sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) <_ ( abs ` X ) <-> A. s e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } s <_ ( abs ` X ) ) ) |
21 |
16 20
|
syl5bb |
|- ( ph -> ( R <_ ( abs ` X ) <-> A. s e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } s <_ ( abs ` X ) ) ) |
22 |
|
fveq2 |
|- ( r = s -> ( G ` r ) = ( G ` s ) ) |
23 |
22
|
seqeq3d |
|- ( r = s -> seq 0 ( + , ( G ` r ) ) = seq 0 ( + , ( G ` s ) ) ) |
24 |
23
|
eleq1d |
|- ( r = s -> ( seq 0 ( + , ( G ` r ) ) e. dom ~~> <-> seq 0 ( + , ( G ` s ) ) e. dom ~~> ) ) |
25 |
24
|
ralrab |
|- ( A. s e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } s <_ ( abs ` X ) <-> A. s e. RR ( seq 0 ( + , ( G ` s ) ) e. dom ~~> -> s <_ ( abs ` X ) ) ) |
26 |
21 25
|
bitrdi |
|- ( ph -> ( R <_ ( abs ` X ) <-> A. s e. RR ( seq 0 ( + , ( G ` s ) ) e. dom ~~> -> s <_ ( abs ` X ) ) ) ) |
27 |
15 26
|
mtbid |
|- ( ph -> -. A. s e. RR ( seq 0 ( + , ( G ` s ) ) e. dom ~~> -> s <_ ( abs ` X ) ) ) |
28 |
|
rexanali |
|- ( E. s e. RR ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ -. s <_ ( abs ` X ) ) <-> -. A. s e. RR ( seq 0 ( + , ( G ` s ) ) e. dom ~~> -> s <_ ( abs ` X ) ) ) |
29 |
27 28
|
sylibr |
|- ( ph -> E. s e. RR ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ -. s <_ ( abs ` X ) ) ) |
30 |
|
ltnle |
|- ( ( ( abs ` X ) e. RR /\ s e. RR ) -> ( ( abs ` X ) < s <-> -. s <_ ( abs ` X ) ) ) |
31 |
8 30
|
sylan |
|- ( ( ph /\ s e. RR ) -> ( ( abs ` X ) < s <-> -. s <_ ( abs ` X ) ) ) |
32 |
31
|
adantr |
|- ( ( ( ph /\ s e. RR ) /\ seq 0 ( + , ( G ` s ) ) e. dom ~~> ) -> ( ( abs ` X ) < s <-> -. s <_ ( abs ` X ) ) ) |
33 |
2
|
ad2antrr |
|- ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> A : NN0 --> CC ) |
34 |
4
|
ad2antrr |
|- ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> X e. CC ) |
35 |
|
simplr |
|- ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> s e. RR ) |
36 |
35
|
recnd |
|- ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> s e. CC ) |
37 |
|
simprr |
|- ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> ( abs ` X ) < s ) |
38 |
|
0red |
|- ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> 0 e. RR ) |
39 |
34
|
abscld |
|- ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> ( abs ` X ) e. RR ) |
40 |
34
|
absge0d |
|- ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> 0 <_ ( abs ` X ) ) |
41 |
38 39 35 40 37
|
lelttrd |
|- ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> 0 < s ) |
42 |
38 35 41
|
ltled |
|- ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> 0 <_ s ) |
43 |
35 42
|
absidd |
|- ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> ( abs ` s ) = s ) |
44 |
37 43
|
breqtrrd |
|- ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> ( abs ` X ) < ( abs ` s ) ) |
45 |
|
simprl |
|- ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> seq 0 ( + , ( G ` s ) ) e. dom ~~> ) |
46 |
1 33 34 36 44 45 6
|
radcnvlem1 |
|- ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> seq 0 ( + , H ) e. dom ~~> ) |
47 |
1 33 34 36 44 45
|
radcnvlem2 |
|- ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> seq 0 ( + , ( abs o. ( G ` X ) ) ) e. dom ~~> ) |
48 |
46 47
|
jca |
|- ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> ( seq 0 ( + , H ) e. dom ~~> /\ seq 0 ( + , ( abs o. ( G ` X ) ) ) e. dom ~~> ) ) |
49 |
48
|
expr |
|- ( ( ( ph /\ s e. RR ) /\ seq 0 ( + , ( G ` s ) ) e. dom ~~> ) -> ( ( abs ` X ) < s -> ( seq 0 ( + , H ) e. dom ~~> /\ seq 0 ( + , ( abs o. ( G ` X ) ) ) e. dom ~~> ) ) ) |
50 |
32 49
|
sylbird |
|- ( ( ( ph /\ s e. RR ) /\ seq 0 ( + , ( G ` s ) ) e. dom ~~> ) -> ( -. s <_ ( abs ` X ) -> ( seq 0 ( + , H ) e. dom ~~> /\ seq 0 ( + , ( abs o. ( G ` X ) ) ) e. dom ~~> ) ) ) |
51 |
50
|
expimpd |
|- ( ( ph /\ s e. RR ) -> ( ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ -. s <_ ( abs ` X ) ) -> ( seq 0 ( + , H ) e. dom ~~> /\ seq 0 ( + , ( abs o. ( G ` X ) ) ) e. dom ~~> ) ) ) |
52 |
51
|
rexlimdva |
|- ( ph -> ( E. s e. RR ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ -. s <_ ( abs ` X ) ) -> ( seq 0 ( + , H ) e. dom ~~> /\ seq 0 ( + , ( abs o. ( G ` X ) ) ) e. dom ~~> ) ) ) |
53 |
29 52
|
mpd |
|- ( ph -> ( seq 0 ( + , H ) e. dom ~~> /\ seq 0 ( + , ( abs o. ( G ` X ) ) ) e. dom ~~> ) ) |