Metamath Proof Explorer


Theorem radcnvlt1

Description: If X is within the open disk of radius R centered at zero, then the infinite series converges absolutely at X , and also converges when the series is multiplied by n . (Contributed by Mario Carneiro, 26-Feb-2015)

Ref Expression
Hypotheses pser.g
|- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) )
radcnv.a
|- ( ph -> A : NN0 --> CC )
radcnv.r
|- R = sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < )
radcnvlt.x
|- ( ph -> X e. CC )
radcnvlt.a
|- ( ph -> ( abs ` X ) < R )
radcnvlt1.h
|- H = ( m e. NN0 |-> ( m x. ( abs ` ( ( G ` X ) ` m ) ) ) )
Assertion radcnvlt1
|- ( ph -> ( seq 0 ( + , H ) e. dom ~~> /\ seq 0 ( + , ( abs o. ( G ` X ) ) ) e. dom ~~> ) )

Proof

Step Hyp Ref Expression
1 pser.g
 |-  G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) )
2 radcnv.a
 |-  ( ph -> A : NN0 --> CC )
3 radcnv.r
 |-  R = sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < )
4 radcnvlt.x
 |-  ( ph -> X e. CC )
5 radcnvlt.a
 |-  ( ph -> ( abs ` X ) < R )
6 radcnvlt1.h
 |-  H = ( m e. NN0 |-> ( m x. ( abs ` ( ( G ` X ) ` m ) ) ) )
7 ressxr
 |-  RR C_ RR*
8 4 abscld
 |-  ( ph -> ( abs ` X ) e. RR )
9 7 8 sselid
 |-  ( ph -> ( abs ` X ) e. RR* )
10 iccssxr
 |-  ( 0 [,] +oo ) C_ RR*
11 1 2 3 radcnvcl
 |-  ( ph -> R e. ( 0 [,] +oo ) )
12 10 11 sselid
 |-  ( ph -> R e. RR* )
13 xrltnle
 |-  ( ( ( abs ` X ) e. RR* /\ R e. RR* ) -> ( ( abs ` X ) < R <-> -. R <_ ( abs ` X ) ) )
14 9 12 13 syl2anc
 |-  ( ph -> ( ( abs ` X ) < R <-> -. R <_ ( abs ` X ) ) )
15 5 14 mpbid
 |-  ( ph -> -. R <_ ( abs ` X ) )
16 3 breq1i
 |-  ( R <_ ( abs ` X ) <-> sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) <_ ( abs ` X ) )
17 ssrab2
 |-  { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } C_ RR
18 17 7 sstri
 |-  { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } C_ RR*
19 supxrleub
 |-  ( ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } C_ RR* /\ ( abs ` X ) e. RR* ) -> ( sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) <_ ( abs ` X ) <-> A. s e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } s <_ ( abs ` X ) ) )
20 18 9 19 sylancr
 |-  ( ph -> ( sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) <_ ( abs ` X ) <-> A. s e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } s <_ ( abs ` X ) ) )
21 16 20 syl5bb
 |-  ( ph -> ( R <_ ( abs ` X ) <-> A. s e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } s <_ ( abs ` X ) ) )
22 fveq2
 |-  ( r = s -> ( G ` r ) = ( G ` s ) )
23 22 seqeq3d
 |-  ( r = s -> seq 0 ( + , ( G ` r ) ) = seq 0 ( + , ( G ` s ) ) )
24 23 eleq1d
 |-  ( r = s -> ( seq 0 ( + , ( G ` r ) ) e. dom ~~> <-> seq 0 ( + , ( G ` s ) ) e. dom ~~> ) )
25 24 ralrab
 |-  ( A. s e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } s <_ ( abs ` X ) <-> A. s e. RR ( seq 0 ( + , ( G ` s ) ) e. dom ~~> -> s <_ ( abs ` X ) ) )
26 21 25 bitrdi
 |-  ( ph -> ( R <_ ( abs ` X ) <-> A. s e. RR ( seq 0 ( + , ( G ` s ) ) e. dom ~~> -> s <_ ( abs ` X ) ) ) )
27 15 26 mtbid
 |-  ( ph -> -. A. s e. RR ( seq 0 ( + , ( G ` s ) ) e. dom ~~> -> s <_ ( abs ` X ) ) )
28 rexanali
 |-  ( E. s e. RR ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ -. s <_ ( abs ` X ) ) <-> -. A. s e. RR ( seq 0 ( + , ( G ` s ) ) e. dom ~~> -> s <_ ( abs ` X ) ) )
29 27 28 sylibr
 |-  ( ph -> E. s e. RR ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ -. s <_ ( abs ` X ) ) )
30 ltnle
 |-  ( ( ( abs ` X ) e. RR /\ s e. RR ) -> ( ( abs ` X ) < s <-> -. s <_ ( abs ` X ) ) )
31 8 30 sylan
 |-  ( ( ph /\ s e. RR ) -> ( ( abs ` X ) < s <-> -. s <_ ( abs ` X ) ) )
32 31 adantr
 |-  ( ( ( ph /\ s e. RR ) /\ seq 0 ( + , ( G ` s ) ) e. dom ~~> ) -> ( ( abs ` X ) < s <-> -. s <_ ( abs ` X ) ) )
33 2 ad2antrr
 |-  ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> A : NN0 --> CC )
34 4 ad2antrr
 |-  ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> X e. CC )
35 simplr
 |-  ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> s e. RR )
36 35 recnd
 |-  ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> s e. CC )
37 simprr
 |-  ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> ( abs ` X ) < s )
38 0red
 |-  ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> 0 e. RR )
39 34 abscld
 |-  ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> ( abs ` X ) e. RR )
40 34 absge0d
 |-  ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> 0 <_ ( abs ` X ) )
41 38 39 35 40 37 lelttrd
 |-  ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> 0 < s )
42 38 35 41 ltled
 |-  ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> 0 <_ s )
43 35 42 absidd
 |-  ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> ( abs ` s ) = s )
44 37 43 breqtrrd
 |-  ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> ( abs ` X ) < ( abs ` s ) )
45 simprl
 |-  ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> seq 0 ( + , ( G ` s ) ) e. dom ~~> )
46 1 33 34 36 44 45 6 radcnvlem1
 |-  ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> seq 0 ( + , H ) e. dom ~~> )
47 1 33 34 36 44 45 radcnvlem2
 |-  ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> seq 0 ( + , ( abs o. ( G ` X ) ) ) e. dom ~~> )
48 46 47 jca
 |-  ( ( ( ph /\ s e. RR ) /\ ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ ( abs ` X ) < s ) ) -> ( seq 0 ( + , H ) e. dom ~~> /\ seq 0 ( + , ( abs o. ( G ` X ) ) ) e. dom ~~> ) )
49 48 expr
 |-  ( ( ( ph /\ s e. RR ) /\ seq 0 ( + , ( G ` s ) ) e. dom ~~> ) -> ( ( abs ` X ) < s -> ( seq 0 ( + , H ) e. dom ~~> /\ seq 0 ( + , ( abs o. ( G ` X ) ) ) e. dom ~~> ) ) )
50 32 49 sylbird
 |-  ( ( ( ph /\ s e. RR ) /\ seq 0 ( + , ( G ` s ) ) e. dom ~~> ) -> ( -. s <_ ( abs ` X ) -> ( seq 0 ( + , H ) e. dom ~~> /\ seq 0 ( + , ( abs o. ( G ` X ) ) ) e. dom ~~> ) ) )
51 50 expimpd
 |-  ( ( ph /\ s e. RR ) -> ( ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ -. s <_ ( abs ` X ) ) -> ( seq 0 ( + , H ) e. dom ~~> /\ seq 0 ( + , ( abs o. ( G ` X ) ) ) e. dom ~~> ) ) )
52 51 rexlimdva
 |-  ( ph -> ( E. s e. RR ( seq 0 ( + , ( G ` s ) ) e. dom ~~> /\ -. s <_ ( abs ` X ) ) -> ( seq 0 ( + , H ) e. dom ~~> /\ seq 0 ( + , ( abs o. ( G ` X ) ) ) e. dom ~~> ) ) )
53 29 52 mpd
 |-  ( ph -> ( seq 0 ( + , H ) e. dom ~~> /\ seq 0 ( + , ( abs o. ( G ` X ) ) ) e. dom ~~> ) )