Step |
Hyp |
Ref |
Expression |
1 |
|
pser.g |
|- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
2 |
|
radcnv.a |
|- ( ph -> A : NN0 --> CC ) |
3 |
|
radcnv.r |
|- R = sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) |
4 |
|
radcnvlt.x |
|- ( ph -> X e. CC ) |
5 |
|
radcnvlt.a |
|- ( ph -> ( abs ` X ) < R ) |
6 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
7 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
8 |
1 2 4
|
psergf |
|- ( ph -> ( G ` X ) : NN0 --> CC ) |
9 |
|
fvco3 |
|- ( ( ( G ` X ) : NN0 --> CC /\ k e. NN0 ) -> ( ( abs o. ( G ` X ) ) ` k ) = ( abs ` ( ( G ` X ) ` k ) ) ) |
10 |
8 9
|
sylan |
|- ( ( ph /\ k e. NN0 ) -> ( ( abs o. ( G ` X ) ) ` k ) = ( abs ` ( ( G ` X ) ` k ) ) ) |
11 |
8
|
ffvelrnda |
|- ( ( ph /\ k e. NN0 ) -> ( ( G ` X ) ` k ) e. CC ) |
12 |
|
id |
|- ( m = k -> m = k ) |
13 |
|
2fveq3 |
|- ( m = k -> ( abs ` ( ( G ` X ) ` m ) ) = ( abs ` ( ( G ` X ) ` k ) ) ) |
14 |
12 13
|
oveq12d |
|- ( m = k -> ( m x. ( abs ` ( ( G ` X ) ` m ) ) ) = ( k x. ( abs ` ( ( G ` X ) ` k ) ) ) ) |
15 |
14
|
cbvmptv |
|- ( m e. NN0 |-> ( m x. ( abs ` ( ( G ` X ) ` m ) ) ) ) = ( k e. NN0 |-> ( k x. ( abs ` ( ( G ` X ) ` k ) ) ) ) |
16 |
1 2 3 4 5 15
|
radcnvlt1 |
|- ( ph -> ( seq 0 ( + , ( m e. NN0 |-> ( m x. ( abs ` ( ( G ` X ) ` m ) ) ) ) ) e. dom ~~> /\ seq 0 ( + , ( abs o. ( G ` X ) ) ) e. dom ~~> ) ) |
17 |
16
|
simprd |
|- ( ph -> seq 0 ( + , ( abs o. ( G ` X ) ) ) e. dom ~~> ) |
18 |
6 7 10 11 17
|
abscvgcvg |
|- ( ph -> seq 0 ( + , ( G ` X ) ) e. dom ~~> ) |