Step |
Hyp |
Ref |
Expression |
1 |
|
raddcn.1 |
|- J = ( topGen ` ran (,) ) |
2 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
3 |
2
|
addcn |
|- + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
4 |
|
ax-resscn |
|- RR C_ CC |
5 |
|
xpss12 |
|- ( ( RR C_ CC /\ RR C_ CC ) -> ( RR X. RR ) C_ ( CC X. CC ) ) |
6 |
4 4 5
|
mp2an |
|- ( RR X. RR ) C_ ( CC X. CC ) |
7 |
2
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
8 |
2
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
9 |
8
|
toponunii |
|- CC = U. ( TopOpen ` CCfld ) |
10 |
7 7 9 9
|
txunii |
|- ( CC X. CC ) = U. ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) |
11 |
10
|
cnrest |
|- ( ( + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) /\ ( RR X. RR ) C_ ( CC X. CC ) ) -> ( + |` ( RR X. RR ) ) e. ( ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) |`t ( RR X. RR ) ) Cn ( TopOpen ` CCfld ) ) ) |
12 |
3 6 11
|
mp2an |
|- ( + |` ( RR X. RR ) ) e. ( ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) |`t ( RR X. RR ) ) Cn ( TopOpen ` CCfld ) ) |
13 |
|
reex |
|- RR e. _V |
14 |
|
txrest |
|- ( ( ( ( TopOpen ` CCfld ) e. Top /\ ( TopOpen ` CCfld ) e. Top ) /\ ( RR e. _V /\ RR e. _V ) ) -> ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) |`t ( RR X. RR ) ) = ( ( ( TopOpen ` CCfld ) |`t RR ) tX ( ( TopOpen ` CCfld ) |`t RR ) ) ) |
15 |
7 7 13 13 14
|
mp4an |
|- ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) |`t ( RR X. RR ) ) = ( ( ( TopOpen ` CCfld ) |`t RR ) tX ( ( TopOpen ` CCfld ) |`t RR ) ) |
16 |
2
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
17 |
1 16
|
eqtr2i |
|- ( ( TopOpen ` CCfld ) |`t RR ) = J |
18 |
17 17
|
oveq12i |
|- ( ( ( TopOpen ` CCfld ) |`t RR ) tX ( ( TopOpen ` CCfld ) |`t RR ) ) = ( J tX J ) |
19 |
15 18
|
eqtri |
|- ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) |`t ( RR X. RR ) ) = ( J tX J ) |
20 |
19
|
oveq1i |
|- ( ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) |`t ( RR X. RR ) ) Cn ( TopOpen ` CCfld ) ) = ( ( J tX J ) Cn ( TopOpen ` CCfld ) ) |
21 |
12 20
|
eleqtri |
|- ( + |` ( RR X. RR ) ) e. ( ( J tX J ) Cn ( TopOpen ` CCfld ) ) |
22 |
|
ax-addf |
|- + : ( CC X. CC ) --> CC |
23 |
|
ffn |
|- ( + : ( CC X. CC ) --> CC -> + Fn ( CC X. CC ) ) |
24 |
22 23
|
ax-mp |
|- + Fn ( CC X. CC ) |
25 |
|
fnssres |
|- ( ( + Fn ( CC X. CC ) /\ ( RR X. RR ) C_ ( CC X. CC ) ) -> ( + |` ( RR X. RR ) ) Fn ( RR X. RR ) ) |
26 |
24 6 25
|
mp2an |
|- ( + |` ( RR X. RR ) ) Fn ( RR X. RR ) |
27 |
|
fnov |
|- ( ( + |` ( RR X. RR ) ) Fn ( RR X. RR ) <-> ( + |` ( RR X. RR ) ) = ( x e. RR , y e. RR |-> ( x ( + |` ( RR X. RR ) ) y ) ) ) |
28 |
26 27
|
mpbi |
|- ( + |` ( RR X. RR ) ) = ( x e. RR , y e. RR |-> ( x ( + |` ( RR X. RR ) ) y ) ) |
29 |
|
ovres |
|- ( ( x e. RR /\ y e. RR ) -> ( x ( + |` ( RR X. RR ) ) y ) = ( x + y ) ) |
30 |
29
|
mpoeq3ia |
|- ( x e. RR , y e. RR |-> ( x ( + |` ( RR X. RR ) ) y ) ) = ( x e. RR , y e. RR |-> ( x + y ) ) |
31 |
28 30
|
eqtri |
|- ( + |` ( RR X. RR ) ) = ( x e. RR , y e. RR |-> ( x + y ) ) |
32 |
31
|
rneqi |
|- ran ( + |` ( RR X. RR ) ) = ran ( x e. RR , y e. RR |-> ( x + y ) ) |
33 |
|
readdcl |
|- ( ( x e. RR /\ y e. RR ) -> ( x + y ) e. RR ) |
34 |
33
|
rgen2 |
|- A. x e. RR A. y e. RR ( x + y ) e. RR |
35 |
|
eqid |
|- ( x e. RR , y e. RR |-> ( x + y ) ) = ( x e. RR , y e. RR |-> ( x + y ) ) |
36 |
35
|
rnmposs |
|- ( A. x e. RR A. y e. RR ( x + y ) e. RR -> ran ( x e. RR , y e. RR |-> ( x + y ) ) C_ RR ) |
37 |
34 36
|
ax-mp |
|- ran ( x e. RR , y e. RR |-> ( x + y ) ) C_ RR |
38 |
32 37
|
eqsstri |
|- ran ( + |` ( RR X. RR ) ) C_ RR |
39 |
|
cnrest2 |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ran ( + |` ( RR X. RR ) ) C_ RR /\ RR C_ CC ) -> ( ( + |` ( RR X. RR ) ) e. ( ( J tX J ) Cn ( TopOpen ` CCfld ) ) <-> ( + |` ( RR X. RR ) ) e. ( ( J tX J ) Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) ) |
40 |
8 38 4 39
|
mp3an |
|- ( ( + |` ( RR X. RR ) ) e. ( ( J tX J ) Cn ( TopOpen ` CCfld ) ) <-> ( + |` ( RR X. RR ) ) e. ( ( J tX J ) Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) |
41 |
21 40
|
mpbi |
|- ( + |` ( RR X. RR ) ) e. ( ( J tX J ) Cn ( ( TopOpen ` CCfld ) |`t RR ) ) |
42 |
17
|
oveq2i |
|- ( ( J tX J ) Cn ( ( TopOpen ` CCfld ) |`t RR ) ) = ( ( J tX J ) Cn J ) |
43 |
41 31 42
|
3eltr3i |
|- ( x e. RR , y e. RR |-> ( x + y ) ) e. ( ( J tX J ) Cn J ) |