| Step |
Hyp |
Ref |
Expression |
| 1 |
|
israg.p |
|- P = ( Base ` G ) |
| 2 |
|
israg.d |
|- .- = ( dist ` G ) |
| 3 |
|
israg.i |
|- I = ( Itv ` G ) |
| 4 |
|
israg.l |
|- L = ( LineG ` G ) |
| 5 |
|
israg.s |
|- S = ( pInvG ` G ) |
| 6 |
|
israg.g |
|- ( ph -> G e. TarskiG ) |
| 7 |
|
israg.a |
|- ( ph -> A e. P ) |
| 8 |
|
israg.b |
|- ( ph -> B e. P ) |
| 9 |
|
israg.c |
|- ( ph -> C e. P ) |
| 10 |
|
ragflat.1 |
|- ( ph -> <" A B C "> e. ( raG ` G ) ) |
| 11 |
|
ragflat.2 |
|- ( ph -> <" A C B "> e. ( raG ` G ) ) |
| 12 |
|
simpr |
|- ( ( ph /\ B = C ) -> B = C ) |
| 13 |
6
|
adantr |
|- ( ( ph /\ B =/= C ) -> G e. TarskiG ) |
| 14 |
7
|
adantr |
|- ( ( ph /\ B =/= C ) -> A e. P ) |
| 15 |
8
|
adantr |
|- ( ( ph /\ B =/= C ) -> B e. P ) |
| 16 |
9
|
adantr |
|- ( ( ph /\ B =/= C ) -> C e. P ) |
| 17 |
|
eqid |
|- ( S ` C ) = ( S ` C ) |
| 18 |
1 2 3 4 5 13 16 17 14
|
mircl |
|- ( ( ph /\ B =/= C ) -> ( ( S ` C ) ` A ) e. P ) |
| 19 |
10
|
adantr |
|- ( ( ph /\ B =/= C ) -> <" A B C "> e. ( raG ` G ) ) |
| 20 |
1 2 3 4 5 13 16 17 14
|
mircgr |
|- ( ( ph /\ B =/= C ) -> ( C .- ( ( S ` C ) ` A ) ) = ( C .- A ) ) |
| 21 |
1 2 3 13 16 18 16 14 20
|
tgcgrcomlr |
|- ( ( ph /\ B =/= C ) -> ( ( ( S ` C ) ` A ) .- C ) = ( A .- C ) ) |
| 22 |
1 2 3 4 5 13 14 15 16
|
israg |
|- ( ( ph /\ B =/= C ) -> ( <" A B C "> e. ( raG ` G ) <-> ( A .- C ) = ( A .- ( ( S ` B ) ` C ) ) ) ) |
| 23 |
19 22
|
mpbid |
|- ( ( ph /\ B =/= C ) -> ( A .- C ) = ( A .- ( ( S ` B ) ` C ) ) ) |
| 24 |
|
eqid |
|- ( S ` B ) = ( S ` B ) |
| 25 |
1 2 3 4 5 13 15 24 16
|
mircl |
|- ( ( ph /\ B =/= C ) -> ( ( S ` B ) ` C ) e. P ) |
| 26 |
11
|
adantr |
|- ( ( ph /\ B =/= C ) -> <" A C B "> e. ( raG ` G ) ) |
| 27 |
1 2 3 4 5 13 14 16 15 26
|
ragcom |
|- ( ( ph /\ B =/= C ) -> <" B C A "> e. ( raG ` G ) ) |
| 28 |
|
simpr |
|- ( ( ph /\ B =/= C ) -> B =/= C ) |
| 29 |
1 2 3 4 5 13 15 24 16
|
mirbtwn |
|- ( ( ph /\ B =/= C ) -> B e. ( ( ( S ` B ) ` C ) I C ) ) |
| 30 |
1 2 3 13 25 15 16 29
|
tgbtwncom |
|- ( ( ph /\ B =/= C ) -> B e. ( C I ( ( S ` B ) ` C ) ) ) |
| 31 |
1 4 3 13 16 25 15 30
|
btwncolg1 |
|- ( ( ph /\ B =/= C ) -> ( B e. ( C L ( ( S ` B ) ` C ) ) \/ C = ( ( S ` B ) ` C ) ) ) |
| 32 |
1 2 3 4 5 13 15 16 14 25 27 28 31
|
ragcol |
|- ( ( ph /\ B =/= C ) -> <" ( ( S ` B ) ` C ) C A "> e. ( raG ` G ) ) |
| 33 |
1 2 3 4 5 13 25 16 14
|
israg |
|- ( ( ph /\ B =/= C ) -> ( <" ( ( S ` B ) ` C ) C A "> e. ( raG ` G ) <-> ( ( ( S ` B ) ` C ) .- A ) = ( ( ( S ` B ) ` C ) .- ( ( S ` C ) ` A ) ) ) ) |
| 34 |
32 33
|
mpbid |
|- ( ( ph /\ B =/= C ) -> ( ( ( S ` B ) ` C ) .- A ) = ( ( ( S ` B ) ` C ) .- ( ( S ` C ) ` A ) ) ) |
| 35 |
1 2 3 13 25 14 25 18 34
|
tgcgrcomlr |
|- ( ( ph /\ B =/= C ) -> ( A .- ( ( S ` B ) ` C ) ) = ( ( ( S ` C ) ` A ) .- ( ( S ` B ) ` C ) ) ) |
| 36 |
21 23 35
|
3eqtrd |
|- ( ( ph /\ B =/= C ) -> ( ( ( S ` C ) ` A ) .- C ) = ( ( ( S ` C ) ` A ) .- ( ( S ` B ) ` C ) ) ) |
| 37 |
1 2 3 4 5 13 18 15 16
|
israg |
|- ( ( ph /\ B =/= C ) -> ( <" ( ( S ` C ) ` A ) B C "> e. ( raG ` G ) <-> ( ( ( S ` C ) ` A ) .- C ) = ( ( ( S ` C ) ` A ) .- ( ( S ` B ) ` C ) ) ) ) |
| 38 |
36 37
|
mpbird |
|- ( ( ph /\ B =/= C ) -> <" ( ( S ` C ) ` A ) B C "> e. ( raG ` G ) ) |
| 39 |
1 2 3 4 5 13 16 17 14
|
mirbtwn |
|- ( ( ph /\ B =/= C ) -> C e. ( ( ( S ` C ) ` A ) I A ) ) |
| 40 |
1 2 3 13 18 16 14 39
|
tgbtwncom |
|- ( ( ph /\ B =/= C ) -> C e. ( A I ( ( S ` C ) ` A ) ) ) |
| 41 |
1 2 3 4 5 13 14 15 16 18 19 38 40
|
ragflat2 |
|- ( ( ph /\ B =/= C ) -> B = C ) |
| 42 |
12 41
|
pm2.61dane |
|- ( ph -> B = C ) |