Step |
Hyp |
Ref |
Expression |
1 |
|
israg.p |
|- P = ( Base ` G ) |
2 |
|
israg.d |
|- .- = ( dist ` G ) |
3 |
|
israg.i |
|- I = ( Itv ` G ) |
4 |
|
israg.l |
|- L = ( LineG ` G ) |
5 |
|
israg.s |
|- S = ( pInvG ` G ) |
6 |
|
israg.g |
|- ( ph -> G e. TarskiG ) |
7 |
|
israg.a |
|- ( ph -> A e. P ) |
8 |
|
israg.b |
|- ( ph -> B e. P ) |
9 |
|
israg.c |
|- ( ph -> C e. P ) |
10 |
|
ragflat.1 |
|- ( ph -> <" A B C "> e. ( raG ` G ) ) |
11 |
|
ragflat.2 |
|- ( ph -> <" A C B "> e. ( raG ` G ) ) |
12 |
|
simpr |
|- ( ( ph /\ B = C ) -> B = C ) |
13 |
6
|
adantr |
|- ( ( ph /\ B =/= C ) -> G e. TarskiG ) |
14 |
7
|
adantr |
|- ( ( ph /\ B =/= C ) -> A e. P ) |
15 |
8
|
adantr |
|- ( ( ph /\ B =/= C ) -> B e. P ) |
16 |
9
|
adantr |
|- ( ( ph /\ B =/= C ) -> C e. P ) |
17 |
|
eqid |
|- ( S ` C ) = ( S ` C ) |
18 |
1 2 3 4 5 13 16 17 14
|
mircl |
|- ( ( ph /\ B =/= C ) -> ( ( S ` C ) ` A ) e. P ) |
19 |
10
|
adantr |
|- ( ( ph /\ B =/= C ) -> <" A B C "> e. ( raG ` G ) ) |
20 |
1 2 3 4 5 13 16 17 14
|
mircgr |
|- ( ( ph /\ B =/= C ) -> ( C .- ( ( S ` C ) ` A ) ) = ( C .- A ) ) |
21 |
1 2 3 13 16 18 16 14 20
|
tgcgrcomlr |
|- ( ( ph /\ B =/= C ) -> ( ( ( S ` C ) ` A ) .- C ) = ( A .- C ) ) |
22 |
1 2 3 4 5 13 14 15 16
|
israg |
|- ( ( ph /\ B =/= C ) -> ( <" A B C "> e. ( raG ` G ) <-> ( A .- C ) = ( A .- ( ( S ` B ) ` C ) ) ) ) |
23 |
19 22
|
mpbid |
|- ( ( ph /\ B =/= C ) -> ( A .- C ) = ( A .- ( ( S ` B ) ` C ) ) ) |
24 |
|
eqid |
|- ( S ` B ) = ( S ` B ) |
25 |
1 2 3 4 5 13 15 24 16
|
mircl |
|- ( ( ph /\ B =/= C ) -> ( ( S ` B ) ` C ) e. P ) |
26 |
11
|
adantr |
|- ( ( ph /\ B =/= C ) -> <" A C B "> e. ( raG ` G ) ) |
27 |
1 2 3 4 5 13 14 16 15 26
|
ragcom |
|- ( ( ph /\ B =/= C ) -> <" B C A "> e. ( raG ` G ) ) |
28 |
|
simpr |
|- ( ( ph /\ B =/= C ) -> B =/= C ) |
29 |
1 2 3 4 5 13 15 24 16
|
mirbtwn |
|- ( ( ph /\ B =/= C ) -> B e. ( ( ( S ` B ) ` C ) I C ) ) |
30 |
1 2 3 13 25 15 16 29
|
tgbtwncom |
|- ( ( ph /\ B =/= C ) -> B e. ( C I ( ( S ` B ) ` C ) ) ) |
31 |
1 4 3 13 16 25 15 30
|
btwncolg1 |
|- ( ( ph /\ B =/= C ) -> ( B e. ( C L ( ( S ` B ) ` C ) ) \/ C = ( ( S ` B ) ` C ) ) ) |
32 |
1 2 3 4 5 13 15 16 14 25 27 28 31
|
ragcol |
|- ( ( ph /\ B =/= C ) -> <" ( ( S ` B ) ` C ) C A "> e. ( raG ` G ) ) |
33 |
1 2 3 4 5 13 25 16 14
|
israg |
|- ( ( ph /\ B =/= C ) -> ( <" ( ( S ` B ) ` C ) C A "> e. ( raG ` G ) <-> ( ( ( S ` B ) ` C ) .- A ) = ( ( ( S ` B ) ` C ) .- ( ( S ` C ) ` A ) ) ) ) |
34 |
32 33
|
mpbid |
|- ( ( ph /\ B =/= C ) -> ( ( ( S ` B ) ` C ) .- A ) = ( ( ( S ` B ) ` C ) .- ( ( S ` C ) ` A ) ) ) |
35 |
1 2 3 13 25 14 25 18 34
|
tgcgrcomlr |
|- ( ( ph /\ B =/= C ) -> ( A .- ( ( S ` B ) ` C ) ) = ( ( ( S ` C ) ` A ) .- ( ( S ` B ) ` C ) ) ) |
36 |
21 23 35
|
3eqtrd |
|- ( ( ph /\ B =/= C ) -> ( ( ( S ` C ) ` A ) .- C ) = ( ( ( S ` C ) ` A ) .- ( ( S ` B ) ` C ) ) ) |
37 |
1 2 3 4 5 13 18 15 16
|
israg |
|- ( ( ph /\ B =/= C ) -> ( <" ( ( S ` C ) ` A ) B C "> e. ( raG ` G ) <-> ( ( ( S ` C ) ` A ) .- C ) = ( ( ( S ` C ) ` A ) .- ( ( S ` B ) ` C ) ) ) ) |
38 |
36 37
|
mpbird |
|- ( ( ph /\ B =/= C ) -> <" ( ( S ` C ) ` A ) B C "> e. ( raG ` G ) ) |
39 |
1 2 3 4 5 13 16 17 14
|
mirbtwn |
|- ( ( ph /\ B =/= C ) -> C e. ( ( ( S ` C ) ` A ) I A ) ) |
40 |
1 2 3 13 18 16 14 39
|
tgbtwncom |
|- ( ( ph /\ B =/= C ) -> C e. ( A I ( ( S ` C ) ` A ) ) ) |
41 |
1 2 3 4 5 13 14 15 16 18 19 38 40
|
ragflat2 |
|- ( ( ph /\ B =/= C ) -> B = C ) |
42 |
12 41
|
pm2.61dane |
|- ( ph -> B = C ) |