Metamath Proof Explorer


Theorem ragflat3

Description: Right angle and colinearity. Theorem 8.9 of Schwabhauser p. 58. (Contributed by Thierry Arnoux, 4-Sep-2019)

Ref Expression
Hypotheses israg.p
|- P = ( Base ` G )
israg.d
|- .- = ( dist ` G )
israg.i
|- I = ( Itv ` G )
israg.l
|- L = ( LineG ` G )
israg.s
|- S = ( pInvG ` G )
israg.g
|- ( ph -> G e. TarskiG )
israg.a
|- ( ph -> A e. P )
israg.b
|- ( ph -> B e. P )
israg.c
|- ( ph -> C e. P )
ragflat3.1
|- ( ph -> <" A B C "> e. ( raG ` G ) )
ragflat3.2
|- ( ph -> ( C e. ( A L B ) \/ A = B ) )
Assertion ragflat3
|- ( ph -> ( A = B \/ C = B ) )

Proof

Step Hyp Ref Expression
1 israg.p
 |-  P = ( Base ` G )
2 israg.d
 |-  .- = ( dist ` G )
3 israg.i
 |-  I = ( Itv ` G )
4 israg.l
 |-  L = ( LineG ` G )
5 israg.s
 |-  S = ( pInvG ` G )
6 israg.g
 |-  ( ph -> G e. TarskiG )
7 israg.a
 |-  ( ph -> A e. P )
8 israg.b
 |-  ( ph -> B e. P )
9 israg.c
 |-  ( ph -> C e. P )
10 ragflat3.1
 |-  ( ph -> <" A B C "> e. ( raG ` G ) )
11 ragflat3.2
 |-  ( ph -> ( C e. ( A L B ) \/ A = B ) )
12 6 adantr
 |-  ( ( ph /\ -. A = B ) -> G e. TarskiG )
13 9 adantr
 |-  ( ( ph /\ -. A = B ) -> C e. P )
14 8 adantr
 |-  ( ( ph /\ -. A = B ) -> B e. P )
15 7 adantr
 |-  ( ( ph /\ -. A = B ) -> A e. P )
16 10 adantr
 |-  ( ( ph /\ -. A = B ) -> <" A B C "> e. ( raG ` G ) )
17 simpr
 |-  ( ( ph /\ -. A = B ) -> -. A = B )
18 17 neqned
 |-  ( ( ph /\ -. A = B ) -> A =/= B )
19 11 adantr
 |-  ( ( ph /\ -. A = B ) -> ( C e. ( A L B ) \/ A = B ) )
20 1 4 3 12 15 14 13 19 colrot1
 |-  ( ( ph /\ -. A = B ) -> ( A e. ( B L C ) \/ B = C ) )
21 1 2 3 4 5 12 15 14 13 13 16 18 20 ragcol
 |-  ( ( ph /\ -. A = B ) -> <" C B C "> e. ( raG ` G ) )
22 1 2 3 4 5 12 13 14 15 21 ragtriva
 |-  ( ( ph /\ -. A = B ) -> C = B )
23 22 ex
 |-  ( ph -> ( -. A = B -> C = B ) )
24 23 orrd
 |-  ( ph -> ( A = B \/ C = B ) )