| Step |
Hyp |
Ref |
Expression |
| 1 |
|
israg.p |
|- P = ( Base ` G ) |
| 2 |
|
israg.d |
|- .- = ( dist ` G ) |
| 3 |
|
israg.i |
|- I = ( Itv ` G ) |
| 4 |
|
israg.l |
|- L = ( LineG ` G ) |
| 5 |
|
israg.s |
|- S = ( pInvG ` G ) |
| 6 |
|
israg.g |
|- ( ph -> G e. TarskiG ) |
| 7 |
|
israg.a |
|- ( ph -> A e. P ) |
| 8 |
|
israg.b |
|- ( ph -> B e. P ) |
| 9 |
|
israg.c |
|- ( ph -> C e. P ) |
| 10 |
|
ragncol.1 |
|- ( ph -> <" A B C "> e. ( raG ` G ) ) |
| 11 |
|
ragncol.2 |
|- ( ph -> A =/= B ) |
| 12 |
|
ragncol.3 |
|- ( ph -> C =/= B ) |
| 13 |
11
|
neneqd |
|- ( ph -> -. A = B ) |
| 14 |
12
|
neneqd |
|- ( ph -> -. C = B ) |
| 15 |
|
ioran |
|- ( -. ( A = B \/ C = B ) <-> ( -. A = B /\ -. C = B ) ) |
| 16 |
13 14 15
|
sylanbrc |
|- ( ph -> -. ( A = B \/ C = B ) ) |
| 17 |
6
|
adantr |
|- ( ( ph /\ ( C e. ( A L B ) \/ A = B ) ) -> G e. TarskiG ) |
| 18 |
7
|
adantr |
|- ( ( ph /\ ( C e. ( A L B ) \/ A = B ) ) -> A e. P ) |
| 19 |
8
|
adantr |
|- ( ( ph /\ ( C e. ( A L B ) \/ A = B ) ) -> B e. P ) |
| 20 |
9
|
adantr |
|- ( ( ph /\ ( C e. ( A L B ) \/ A = B ) ) -> C e. P ) |
| 21 |
10
|
adantr |
|- ( ( ph /\ ( C e. ( A L B ) \/ A = B ) ) -> <" A B C "> e. ( raG ` G ) ) |
| 22 |
|
simpr |
|- ( ( ph /\ ( C e. ( A L B ) \/ A = B ) ) -> ( C e. ( A L B ) \/ A = B ) ) |
| 23 |
1 2 3 4 5 17 18 19 20 21 22
|
ragflat3 |
|- ( ( ph /\ ( C e. ( A L B ) \/ A = B ) ) -> ( A = B \/ C = B ) ) |
| 24 |
16 23
|
mtand |
|- ( ph -> -. ( C e. ( A L B ) \/ A = B ) ) |