Metamath Proof Explorer


Theorem ragncol

Description: Right angle implies non-colinearity. A consequence of theorem 8.9 of Schwabhauser p. 58. (Contributed by Thierry Arnoux, 1-Dec-2019)

Ref Expression
Hypotheses israg.p
|- P = ( Base ` G )
israg.d
|- .- = ( dist ` G )
israg.i
|- I = ( Itv ` G )
israg.l
|- L = ( LineG ` G )
israg.s
|- S = ( pInvG ` G )
israg.g
|- ( ph -> G e. TarskiG )
israg.a
|- ( ph -> A e. P )
israg.b
|- ( ph -> B e. P )
israg.c
|- ( ph -> C e. P )
ragncol.1
|- ( ph -> <" A B C "> e. ( raG ` G ) )
ragncol.2
|- ( ph -> A =/= B )
ragncol.3
|- ( ph -> C =/= B )
Assertion ragncol
|- ( ph -> -. ( C e. ( A L B ) \/ A = B ) )

Proof

Step Hyp Ref Expression
1 israg.p
 |-  P = ( Base ` G )
2 israg.d
 |-  .- = ( dist ` G )
3 israg.i
 |-  I = ( Itv ` G )
4 israg.l
 |-  L = ( LineG ` G )
5 israg.s
 |-  S = ( pInvG ` G )
6 israg.g
 |-  ( ph -> G e. TarskiG )
7 israg.a
 |-  ( ph -> A e. P )
8 israg.b
 |-  ( ph -> B e. P )
9 israg.c
 |-  ( ph -> C e. P )
10 ragncol.1
 |-  ( ph -> <" A B C "> e. ( raG ` G ) )
11 ragncol.2
 |-  ( ph -> A =/= B )
12 ragncol.3
 |-  ( ph -> C =/= B )
13 11 neneqd
 |-  ( ph -> -. A = B )
14 12 neneqd
 |-  ( ph -> -. C = B )
15 ioran
 |-  ( -. ( A = B \/ C = B ) <-> ( -. A = B /\ -. C = B ) )
16 13 14 15 sylanbrc
 |-  ( ph -> -. ( A = B \/ C = B ) )
17 6 adantr
 |-  ( ( ph /\ ( C e. ( A L B ) \/ A = B ) ) -> G e. TarskiG )
18 7 adantr
 |-  ( ( ph /\ ( C e. ( A L B ) \/ A = B ) ) -> A e. P )
19 8 adantr
 |-  ( ( ph /\ ( C e. ( A L B ) \/ A = B ) ) -> B e. P )
20 9 adantr
 |-  ( ( ph /\ ( C e. ( A L B ) \/ A = B ) ) -> C e. P )
21 10 adantr
 |-  ( ( ph /\ ( C e. ( A L B ) \/ A = B ) ) -> <" A B C "> e. ( raG ` G ) )
22 simpr
 |-  ( ( ph /\ ( C e. ( A L B ) \/ A = B ) ) -> ( C e. ( A L B ) \/ A = B ) )
23 1 2 3 4 5 17 18 19 20 21 22 ragflat3
 |-  ( ( ph /\ ( C e. ( A L B ) \/ A = B ) ) -> ( A = B \/ C = B ) )
24 16 23 mtand
 |-  ( ph -> -. ( C e. ( A L B ) \/ A = B ) )