Metamath Proof Explorer


Theorem ragtriva

Description: Trivial right angle. Theorem 8.8 of Schwabhauser p. 58. (Contributed by Thierry Arnoux, 3-Sep-2019)

Ref Expression
Hypotheses israg.p
|- P = ( Base ` G )
israg.d
|- .- = ( dist ` G )
israg.i
|- I = ( Itv ` G )
israg.l
|- L = ( LineG ` G )
israg.s
|- S = ( pInvG ` G )
israg.g
|- ( ph -> G e. TarskiG )
israg.a
|- ( ph -> A e. P )
israg.b
|- ( ph -> B e. P )
israg.c
|- ( ph -> C e. P )
ragtriva.1
|- ( ph -> <" A B A "> e. ( raG ` G ) )
Assertion ragtriva
|- ( ph -> A = B )

Proof

Step Hyp Ref Expression
1 israg.p
 |-  P = ( Base ` G )
2 israg.d
 |-  .- = ( dist ` G )
3 israg.i
 |-  I = ( Itv ` G )
4 israg.l
 |-  L = ( LineG ` G )
5 israg.s
 |-  S = ( pInvG ` G )
6 israg.g
 |-  ( ph -> G e. TarskiG )
7 israg.a
 |-  ( ph -> A e. P )
8 israg.b
 |-  ( ph -> B e. P )
9 israg.c
 |-  ( ph -> C e. P )
10 ragtriva.1
 |-  ( ph -> <" A B A "> e. ( raG ` G ) )
11 1 2 3 4 5 6 8 7 9 ragtrivb
 |-  ( ph -> <" B A A "> e. ( raG ` G ) )
12 1 2 3 4 5 6 8 7 7 11 ragcom
 |-  ( ph -> <" A A B "> e. ( raG ` G ) )
13 1 2 3 4 5 6 7 7 8 12 10 ragflat
 |-  ( ph -> A = B )