| Step |
Hyp |
Ref |
Expression |
| 1 |
|
israg.p |
|- P = ( Base ` G ) |
| 2 |
|
israg.d |
|- .- = ( dist ` G ) |
| 3 |
|
israg.i |
|- I = ( Itv ` G ) |
| 4 |
|
israg.l |
|- L = ( LineG ` G ) |
| 5 |
|
israg.s |
|- S = ( pInvG ` G ) |
| 6 |
|
israg.g |
|- ( ph -> G e. TarskiG ) |
| 7 |
|
israg.a |
|- ( ph -> A e. P ) |
| 8 |
|
israg.b |
|- ( ph -> B e. P ) |
| 9 |
|
israg.c |
|- ( ph -> C e. P ) |
| 10 |
|
eqid |
|- ( S ` B ) = ( S ` B ) |
| 11 |
1 2 3 4 5 6 8 10
|
mircinv |
|- ( ph -> ( ( S ` B ) ` B ) = B ) |
| 12 |
11
|
oveq2d |
|- ( ph -> ( A .- ( ( S ` B ) ` B ) ) = ( A .- B ) ) |
| 13 |
12
|
eqcomd |
|- ( ph -> ( A .- B ) = ( A .- ( ( S ` B ) ` B ) ) ) |
| 14 |
1 2 3 4 5 6 7 8 8
|
israg |
|- ( ph -> ( <" A B B "> e. ( raG ` G ) <-> ( A .- B ) = ( A .- ( ( S ` B ) ` B ) ) ) ) |
| 15 |
13 14
|
mpbird |
|- ( ph -> <" A B B "> e. ( raG ` G ) ) |