Metamath Proof Explorer


Theorem ral2imi

Description: Inference quantifying antecedent, nested antecedent, and consequent, with a strong hypothesis. (Contributed by NM, 19-Dec-2006) Allow shortening of ralim . (Revised by Wolf Lammen, 1-Dec-2019)

Ref Expression
Hypothesis ral2imi.1
|- ( ph -> ( ps -> ch ) )
Assertion ral2imi
|- ( A. x e. A ph -> ( A. x e. A ps -> A. x e. A ch ) )

Proof

Step Hyp Ref Expression
1 ral2imi.1
 |-  ( ph -> ( ps -> ch ) )
2 df-ral
 |-  ( A. x e. A ph <-> A. x ( x e. A -> ph ) )
3 1 imim3i
 |-  ( ( x e. A -> ph ) -> ( ( x e. A -> ps ) -> ( x e. A -> ch ) ) )
4 3 al2imi
 |-  ( A. x ( x e. A -> ph ) -> ( A. x ( x e. A -> ps ) -> A. x ( x e. A -> ch ) ) )
5 df-ral
 |-  ( A. x e. A ps <-> A. x ( x e. A -> ps ) )
6 df-ral
 |-  ( A. x e. A ch <-> A. x ( x e. A -> ch ) )
7 4 5 6 3imtr4g
 |-  ( A. x ( x e. A -> ph ) -> ( A. x e. A ps -> A. x e. A ch ) )
8 2 7 sylbi
 |-  ( A. x e. A ph -> ( A. x e. A ps -> A. x e. A ch ) )