| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ralab.1 |
|- ( y = x -> ( ph <-> ps ) ) |
| 2 |
|
df-ral |
|- ( A. x e. { y | ph } ch <-> A. x ( x e. { y | ph } -> ch ) ) |
| 3 |
|
df-clab |
|- ( x e. { y | ph } <-> [ x / y ] ph ) |
| 4 |
1
|
sbievw |
|- ( [ x / y ] ph <-> ps ) |
| 5 |
3 4
|
bitri |
|- ( x e. { y | ph } <-> ps ) |
| 6 |
5
|
imbi1i |
|- ( ( x e. { y | ph } -> ch ) <-> ( ps -> ch ) ) |
| 7 |
|
biid |
|- ( ( ps -> ch ) <-> ( ps -> ch ) ) |
| 8 |
6 7
|
bitri |
|- ( ( x e. { y | ph } -> ch ) <-> ( ps -> ch ) ) |
| 9 |
8
|
albii |
|- ( A. x ( x e. { y | ph } -> ch ) <-> A. x ( ps -> ch ) ) |
| 10 |
2 9
|
bitri |
|- ( A. x e. { y | ph } ch <-> A. x ( ps -> ch ) ) |