Metamath Proof Explorer


Theorem ralab

Description: Universal quantification over a class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010) Reduce axiom usage. (Revised by Gino Giotto, 2-Nov-2024)

Ref Expression
Hypothesis ralab.1
|- ( y = x -> ( ph <-> ps ) )
Assertion ralab
|- ( A. x e. { y | ph } ch <-> A. x ( ps -> ch ) )

Proof

Step Hyp Ref Expression
1 ralab.1
 |-  ( y = x -> ( ph <-> ps ) )
2 df-ral
 |-  ( A. x e. { y | ph } ch <-> A. x ( x e. { y | ph } -> ch ) )
3 df-clab
 |-  ( x e. { y | ph } <-> [ x / y ] ph )
4 1 sbievw
 |-  ( [ x / y ] ph <-> ps )
5 3 4 bitri
 |-  ( x e. { y | ph } <-> ps )
6 5 imbi1i
 |-  ( ( x e. { y | ph } -> ch ) <-> ( ps -> ch ) )
7 biid
 |-  ( ( ps -> ch ) <-> ( ps -> ch ) )
8 6 7 bitri
 |-  ( ( x e. { y | ph } -> ch ) <-> ( ps -> ch ) )
9 8 albii
 |-  ( A. x ( x e. { y | ph } -> ch ) <-> A. x ( ps -> ch ) )
10 2 9 bitri
 |-  ( A. x e. { y | ph } ch <-> A. x ( ps -> ch ) )