Metamath Proof Explorer


Theorem ralabOLD

Description: Obsolete version of ralab as of 2-Nov-2024. (Contributed by Jeff Madsen, 10-Jun-2010) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ralab.1
|- ( y = x -> ( ph <-> ps ) )
Assertion ralabOLD
|- ( A. x e. { y | ph } ch <-> A. x ( ps -> ch ) )

Proof

Step Hyp Ref Expression
1 ralab.1
 |-  ( y = x -> ( ph <-> ps ) )
2 df-ral
 |-  ( A. x e. { y | ph } ch <-> A. x ( x e. { y | ph } -> ch ) )
3 vex
 |-  x e. _V
4 3 1 elab
 |-  ( x e. { y | ph } <-> ps )
5 4 imbi1i
 |-  ( ( x e. { y | ph } -> ch ) <-> ( ps -> ch ) )
6 5 albii
 |-  ( A. x ( x e. { y | ph } -> ch ) <-> A. x ( ps -> ch ) )
7 2 6 bitri
 |-  ( A. x e. { y | ph } ch <-> A. x ( ps -> ch ) )