Description: Obsolete version of ralab as of 2-Nov-2024. (Contributed by Jeff Madsen, 10-Jun-2010) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ralab.1 | |- ( y = x -> ( ph <-> ps ) ) |
|
Assertion | ralabOLD | |- ( A. x e. { y | ph } ch <-> A. x ( ps -> ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralab.1 | |- ( y = x -> ( ph <-> ps ) ) |
|
2 | df-ral | |- ( A. x e. { y | ph } ch <-> A. x ( x e. { y | ph } -> ch ) ) |
|
3 | vex | |- x e. _V |
|
4 | 3 1 | elab | |- ( x e. { y | ph } <-> ps ) |
5 | 4 | imbi1i | |- ( ( x e. { y | ph } -> ch ) <-> ( ps -> ch ) ) |
6 | 5 | albii | |- ( A. x ( x e. { y | ph } -> ch ) <-> A. x ( ps -> ch ) ) |
7 | 2 6 | bitri | |- ( A. x e. { y | ph } ch <-> A. x ( ps -> ch ) ) |