Description: Distribute a restricted universal quantifier over a biconditional. Restricted quantification version of albi . (Contributed by NM, 6-Oct-2003) Reduce axiom usage. (Revised by Wolf Lammen, 17-Jun-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | ralbi | |- ( A. x e. A ( ph <-> ps ) -> ( A. x e. A ph <-> A. x e. A ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimp | |- ( ( ph <-> ps ) -> ( ph -> ps ) ) |
|
2 | 1 | ral2imi | |- ( A. x e. A ( ph <-> ps ) -> ( A. x e. A ph -> A. x e. A ps ) ) |
3 | biimpr | |- ( ( ph <-> ps ) -> ( ps -> ph ) ) |
|
4 | 3 | ral2imi | |- ( A. x e. A ( ph <-> ps ) -> ( A. x e. A ps -> A. x e. A ph ) ) |
5 | 2 4 | impbid | |- ( A. x e. A ( ph <-> ps ) -> ( A. x e. A ph <-> A. x e. A ps ) ) |