Metamath Proof Explorer


Theorem ralbi

Description: Distribute a restricted universal quantifier over a biconditional. Restricted quantification version of albi . (Contributed by NM, 6-Oct-2003) Reduce axiom usage. (Revised by Wolf Lammen, 17-Jun-2023)

Ref Expression
Assertion ralbi
|- ( A. x e. A ( ph <-> ps ) -> ( A. x e. A ph <-> A. x e. A ps ) )

Proof

Step Hyp Ref Expression
1 biimp
 |-  ( ( ph <-> ps ) -> ( ph -> ps ) )
2 1 ral2imi
 |-  ( A. x e. A ( ph <-> ps ) -> ( A. x e. A ph -> A. x e. A ps ) )
3 biimpr
 |-  ( ( ph <-> ps ) -> ( ps -> ph ) )
4 3 ral2imi
 |-  ( A. x e. A ( ph <-> ps ) -> ( A. x e. A ps -> A. x e. A ph ) )
5 2 4 impbid
 |-  ( A. x e. A ( ph <-> ps ) -> ( A. x e. A ph <-> A. x e. A ps ) )