Description: Formula-building rule for restricted universal quantifier (deduction form). For a version based on fewer axioms see ralbidv . (Contributed by NM, 27-Jun-1998)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ralbid.1 | |- F/ x ph | |
| ralbid.2 | |- ( ph -> ( ps <-> ch ) ) | ||
| Assertion | ralbid | |- ( ph -> ( A. x e. A ps <-> A. x e. A ch ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ralbid.1 | |- F/ x ph | |
| 2 | ralbid.2 | |- ( ph -> ( ps <-> ch ) ) | |
| 3 | 2 | adantr | |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) | 
| 4 | 1 3 | ralbida | |- ( ph -> ( A. x e. A ps <-> A. x e. A ch ) ) |