Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Oct-2003) (Proof shortened by Wolf Lammen, 31-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ralbida.1 | |- F/ x ph |
|
ralbida.2 | |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) |
||
Assertion | ralbida | |- ( ph -> ( A. x e. A ps <-> A. x e. A ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbida.1 | |- F/ x ph |
|
2 | ralbida.2 | |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) |
|
3 | 2 | biimpd | |- ( ( ph /\ x e. A ) -> ( ps -> ch ) ) |
4 | 1 3 | ralimdaa | |- ( ph -> ( A. x e. A ps -> A. x e. A ch ) ) |
5 | 2 | biimprd | |- ( ( ph /\ x e. A ) -> ( ch -> ps ) ) |
6 | 1 5 | ralimdaa | |- ( ph -> ( A. x e. A ch -> A. x e. A ps ) ) |
7 | 4 6 | impbid | |- ( ph -> ( A. x e. A ps <-> A. x e. A ch ) ) |