Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Oct-2003) (Proof shortened by Wolf Lammen, 31-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ralbida.1 | |- F/ x ph |
|
| ralbida.2 | |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) |
||
| Assertion | ralbida | |- ( ph -> ( A. x e. A ps <-> A. x e. A ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbida.1 | |- F/ x ph |
|
| 2 | ralbida.2 | |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) |
|
| 3 | 2 | biimpd | |- ( ( ph /\ x e. A ) -> ( ps -> ch ) ) |
| 4 | 1 3 | ralimdaa | |- ( ph -> ( A. x e. A ps -> A. x e. A ch ) ) |
| 5 | 2 | biimprd | |- ( ( ph /\ x e. A ) -> ( ch -> ps ) ) |
| 6 | 1 5 | ralimdaa | |- ( ph -> ( A. x e. A ch -> A. x e. A ps ) ) |
| 7 | 4 6 | impbid | |- ( ph -> ( A. x e. A ps <-> A. x e. A ch ) ) |