Metamath Proof Explorer


Theorem ralbida

Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Oct-2003) (Proof shortened by Wolf Lammen, 31-Oct-2024)

Ref Expression
Hypotheses ralbida.1
|- F/ x ph
ralbida.2
|- ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
Assertion ralbida
|- ( ph -> ( A. x e. A ps <-> A. x e. A ch ) )

Proof

Step Hyp Ref Expression
1 ralbida.1
 |-  F/ x ph
2 ralbida.2
 |-  ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
3 2 biimpd
 |-  ( ( ph /\ x e. A ) -> ( ps -> ch ) )
4 1 3 ralimdaa
 |-  ( ph -> ( A. x e. A ps -> A. x e. A ch ) )
5 2 biimprd
 |-  ( ( ph /\ x e. A ) -> ( ch -> ps ) )
6 1 5 ralimdaa
 |-  ( ph -> ( A. x e. A ch -> A. x e. A ps ) )
7 4 6 impbid
 |-  ( ph -> ( A. x e. A ps <-> A. x e. A ch ) )