Metamath Proof Explorer


Theorem ralbidaOLD

Description: Obsolete version of ralbida as of 31-Oct-2024. (Contributed by NM, 6-Oct-2003) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ralbida.1
|- F/ x ph
ralbida.2
|- ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
Assertion ralbidaOLD
|- ( ph -> ( A. x e. A ps <-> A. x e. A ch ) )

Proof

Step Hyp Ref Expression
1 ralbida.1
 |-  F/ x ph
2 ralbida.2
 |-  ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
3 2 pm5.74da
 |-  ( ph -> ( ( x e. A -> ps ) <-> ( x e. A -> ch ) ) )
4 1 3 albid
 |-  ( ph -> ( A. x ( x e. A -> ps ) <-> A. x ( x e. A -> ch ) ) )
5 df-ral
 |-  ( A. x e. A ps <-> A. x ( x e. A -> ps ) )
6 df-ral
 |-  ( A. x e. A ch <-> A. x ( x e. A -> ch ) )
7 4 5 6 3bitr4g
 |-  ( ph -> ( A. x e. A ps <-> A. x e. A ch ) )