Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Apr-1997)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ralbidv2.1 | |- ( ph -> ( ( x e. A -> ps ) <-> ( x e. B -> ch ) ) ) |
|
Assertion | ralbidv2 | |- ( ph -> ( A. x e. A ps <-> A. x e. B ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbidv2.1 | |- ( ph -> ( ( x e. A -> ps ) <-> ( x e. B -> ch ) ) ) |
|
2 | 1 | albidv | |- ( ph -> ( A. x ( x e. A -> ps ) <-> A. x ( x e. B -> ch ) ) ) |
3 | df-ral | |- ( A. x e. A ps <-> A. x ( x e. A -> ps ) ) |
|
4 | df-ral | |- ( A. x e. B ch <-> A. x ( x e. B -> ch ) ) |
|
5 | 2 3 4 | 3bitr4g | |- ( ph -> ( A. x e. A ps <-> A. x e. B ch ) ) |