Metamath Proof Explorer


Theorem ralbidv2

Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Apr-1997)

Ref Expression
Hypothesis ralbidv2.1
|- ( ph -> ( ( x e. A -> ps ) <-> ( x e. B -> ch ) ) )
Assertion ralbidv2
|- ( ph -> ( A. x e. A ps <-> A. x e. B ch ) )

Proof

Step Hyp Ref Expression
1 ralbidv2.1
 |-  ( ph -> ( ( x e. A -> ps ) <-> ( x e. B -> ch ) ) )
2 1 albidv
 |-  ( ph -> ( A. x ( x e. A -> ps ) <-> A. x ( x e. B -> ch ) ) )
3 df-ral
 |-  ( A. x e. A ps <-> A. x ( x e. A -> ps ) )
4 df-ral
 |-  ( A. x e. B ch <-> A. x ( x e. B -> ch ) )
5 2 3 4 3bitr4g
 |-  ( ph -> ( A. x e. A ps <-> A. x e. B ch ) )