Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 4-Mar-1997) Reduce dependencies on axioms. (Revised by Wolf Lammen, 29-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralbidva.1 | |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) |
|
| Assertion | ralbidva | |- ( ph -> ( A. x e. A ps <-> A. x e. A ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbidva.1 | |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) |
|
| 2 | 1 | pm5.74da | |- ( ph -> ( ( x e. A -> ps ) <-> ( x e. A -> ch ) ) ) |
| 3 | 2 | ralbidv2 | |- ( ph -> ( A. x e. A ps <-> A. x e. A ch ) ) |