Metamath Proof Explorer


Theorem ralbidva

Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 4-Mar-1997) Reduce dependencies on axioms. (Revised by Wolf Lammen, 29-Dec-2019)

Ref Expression
Hypothesis ralbidva.1
|- ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
Assertion ralbidva
|- ( ph -> ( A. x e. A ps <-> A. x e. A ch ) )

Proof

Step Hyp Ref Expression
1 ralbidva.1
 |-  ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
2 1 pm5.74da
 |-  ( ph -> ( ( x e. A -> ps ) <-> ( x e. A -> ch ) ) )
3 2 ralbidv2
 |-  ( ph -> ( A. x e. A ps <-> A. x e. A ch ) )