Metamath Proof Explorer


Theorem ralbii2

Description: Inference adding different restricted universal quantifiers to each side of an equivalence. (Contributed by NM, 15-Aug-2005)

Ref Expression
Hypothesis ralbii2.1
|- ( ( x e. A -> ph ) <-> ( x e. B -> ps ) )
Assertion ralbii2
|- ( A. x e. A ph <-> A. x e. B ps )

Proof

Step Hyp Ref Expression
1 ralbii2.1
 |-  ( ( x e. A -> ph ) <-> ( x e. B -> ps ) )
2 1 albii
 |-  ( A. x ( x e. A -> ph ) <-> A. x ( x e. B -> ps ) )
3 df-ral
 |-  ( A. x e. A ph <-> A. x ( x e. A -> ph ) )
4 df-ral
 |-  ( A. x e. B ps <-> A. x ( x e. B -> ps ) )
5 2 3 4 3bitr4i
 |-  ( A. x e. A ph <-> A. x e. B ps )