Metamath Proof Explorer


Theorem ralbiia

Description: Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 26-Nov-2000)

Ref Expression
Hypothesis ralbiia.1
|- ( x e. A -> ( ph <-> ps ) )
Assertion ralbiia
|- ( A. x e. A ph <-> A. x e. A ps )

Proof

Step Hyp Ref Expression
1 ralbiia.1
 |-  ( x e. A -> ( ph <-> ps ) )
2 1 pm5.74i
 |-  ( ( x e. A -> ph ) <-> ( x e. A -> ps ) )
3 2 ralbii2
 |-  ( A. x e. A ph <-> A. x e. A ps )