Description: Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 26-Nov-2000)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ralbiia.1 | |- ( x e. A -> ( ph <-> ps ) ) |
|
Assertion | ralbiia | |- ( A. x e. A ph <-> A. x e. A ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbiia.1 | |- ( x e. A -> ( ph <-> ps ) ) |
|
2 | 1 | pm5.74i | |- ( ( x e. A -> ph ) <-> ( x e. A -> ps ) ) |
3 | 2 | ralbii2 | |- ( A. x e. A ph <-> A. x e. A ps ) |