Description: Split a biconditional and distribute quantifier. Restricted quantifier version of albiim . (Contributed by NM, 3-Jun-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ralbiim | |- ( A. x e. A ( ph <-> ps ) <-> ( A. x e. A ( ph -> ps ) /\ A. x e. A ( ps -> ph ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfbi2 | |- ( ( ph <-> ps ) <-> ( ( ph -> ps ) /\ ( ps -> ph ) ) ) | |
| 2 | 1 | ralbii | |- ( A. x e. A ( ph <-> ps ) <-> A. x e. A ( ( ph -> ps ) /\ ( ps -> ph ) ) ) | 
| 3 | r19.26 | |- ( A. x e. A ( ( ph -> ps ) /\ ( ps -> ph ) ) <-> ( A. x e. A ( ph -> ps ) /\ A. x e. A ( ps -> ph ) ) ) | |
| 4 | 2 3 | bitri | |- ( A. x e. A ( ph <-> ps ) <-> ( A. x e. A ( ph -> ps ) /\ A. x e. A ( ps -> ph ) ) ) |