Metamath Proof Explorer


Theorem ralbiim

Description: Split a biconditional and distribute quantifier. Restricted quantifier version of albiim . (Contributed by NM, 3-Jun-2012)

Ref Expression
Assertion ralbiim
|- ( A. x e. A ( ph <-> ps ) <-> ( A. x e. A ( ph -> ps ) /\ A. x e. A ( ps -> ph ) ) )

Proof

Step Hyp Ref Expression
1 dfbi2
 |-  ( ( ph <-> ps ) <-> ( ( ph -> ps ) /\ ( ps -> ph ) ) )
2 1 ralbii
 |-  ( A. x e. A ( ph <-> ps ) <-> A. x e. A ( ( ph -> ps ) /\ ( ps -> ph ) ) )
3 r19.26
 |-  ( A. x e. A ( ( ph -> ps ) /\ ( ps -> ph ) ) <-> ( A. x e. A ( ph -> ps ) /\ A. x e. A ( ps -> ph ) ) )
4 2 3 bitri
 |-  ( A. x e. A ( ph <-> ps ) <-> ( A. x e. A ( ph -> ps ) /\ A. x e. A ( ps -> ph ) ) )