Metamath Proof Explorer


Theorem ralcom3

Description: A commutation law for restricted universal quantifiers that swaps the domains of the restriction. (Contributed by NM, 22-Feb-2004)

Ref Expression
Assertion ralcom3
|- ( A. x e. A ( x e. B -> ph ) <-> A. x e. B ( x e. A -> ph ) )

Proof

Step Hyp Ref Expression
1 pm2.04
 |-  ( ( x e. A -> ( x e. B -> ph ) ) -> ( x e. B -> ( x e. A -> ph ) ) )
2 1 ralimi2
 |-  ( A. x e. A ( x e. B -> ph ) -> A. x e. B ( x e. A -> ph ) )
3 pm2.04
 |-  ( ( x e. B -> ( x e. A -> ph ) ) -> ( x e. A -> ( x e. B -> ph ) ) )
4 3 ralimi2
 |-  ( A. x e. B ( x e. A -> ph ) -> A. x e. A ( x e. B -> ph ) )
5 2 4 impbii
 |-  ( A. x e. A ( x e. B -> ph ) <-> A. x e. B ( x e. A -> ph ) )