Metamath Proof Explorer


Theorem ralcom3

Description: A commutation law for restricted universal quantifiers that swaps the domains of the restriction. (Contributed by NM, 22-Feb-2004) (Proof shortened by Wolf Lammen, 22-Dec-2024)

Ref Expression
Assertion ralcom3
|- ( A. x e. A ( x e. B -> ph ) <-> A. x e. B ( x e. A -> ph ) )

Proof

Step Hyp Ref Expression
1 bi2.04
 |-  ( ( x e. A -> ( x e. B -> ph ) ) <-> ( x e. B -> ( x e. A -> ph ) ) )
2 1 ralbii2
 |-  ( A. x e. A ( x e. B -> ph ) <-> A. x e. B ( x e. A -> ph ) )