Step |
Hyp |
Ref |
Expression |
1 |
|
eldifsn |
|- ( x e. ( A \ { B } ) <-> ( x e. A /\ x =/= B ) ) |
2 |
1
|
imbi1i |
|- ( ( x e. ( A \ { B } ) -> -. ph ) <-> ( ( x e. A /\ x =/= B ) -> -. ph ) ) |
3 |
|
impexp |
|- ( ( ( x e. A /\ x =/= B ) -> -. ph ) <-> ( x e. A -> ( x =/= B -> -. ph ) ) ) |
4 |
|
df-ne |
|- ( x =/= B <-> -. x = B ) |
5 |
4
|
imbi1i |
|- ( ( x =/= B -> -. ph ) <-> ( -. x = B -> -. ph ) ) |
6 |
|
con34b |
|- ( ( ph -> x = B ) <-> ( -. x = B -> -. ph ) ) |
7 |
5 6
|
bitr4i |
|- ( ( x =/= B -> -. ph ) <-> ( ph -> x = B ) ) |
8 |
7
|
imbi2i |
|- ( ( x e. A -> ( x =/= B -> -. ph ) ) <-> ( x e. A -> ( ph -> x = B ) ) ) |
9 |
2 3 8
|
3bitri |
|- ( ( x e. ( A \ { B } ) -> -. ph ) <-> ( x e. A -> ( ph -> x = B ) ) ) |
10 |
9
|
ralbii2 |
|- ( A. x e. ( A \ { B } ) -. ph <-> A. x e. A ( ph -> x = B ) ) |