Metamath Proof Explorer


Theorem ralel

Description: All elements of a class are elements of the class. (Contributed by AV, 30-Oct-2020)

Ref Expression
Assertion ralel
|- A. x e. A x e. A

Proof

Step Hyp Ref Expression
1 id
 |-  ( x e. A -> x e. A )
2 1 rgen
 |-  A. x e. A x e. A