Metamath Proof Explorer


Theorem raleleq

Description: All elements of a class are elements of a class equal to this class. (Contributed by AV, 30-Oct-2020) Avoid ax-8 . (Revised by Wolf Lammen, 9-Mar-2025)

Ref Expression
Assertion raleleq
|- ( A = B -> A. x e. A x e. B )

Proof

Step Hyp Ref Expression
1 dfcleq
 |-  ( A = B <-> A. x ( x e. A <-> x e. B ) )
2 biimp
 |-  ( ( x e. A <-> x e. B ) -> ( x e. A -> x e. B ) )
3 2 alimi
 |-  ( A. x ( x e. A <-> x e. B ) -> A. x ( x e. A -> x e. B ) )
4 1 3 sylbi
 |-  ( A = B -> A. x ( x e. A -> x e. B ) )
5 df-ral
 |-  ( A. x e. A x e. B <-> A. x ( x e. A -> x e. B ) )
6 4 5 sylibr
 |-  ( A = B -> A. x e. A x e. B )