Description: All elements of a class are elements of a class equal to this class. (Contributed by AV, 30-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | raleleq | |- ( A = B -> A. x e. A x e. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 | |- ( A = B -> ( x e. A <-> x e. B ) ) |
|
2 | 1 | biimpd | |- ( A = B -> ( x e. A -> x e. B ) ) |
3 | 2 | ralrimiv | |- ( A = B -> A. x e. A x e. B ) |