Metamath Proof Explorer


Theorem raleleq

Description: All elements of a class are elements of a class equal to this class. (Contributed by AV, 30-Oct-2020)

Ref Expression
Assertion raleleq
|- ( A = B -> A. x e. A x e. B )

Proof

Step Hyp Ref Expression
1 ralel
 |-  A. x e. B x e. B
2 id
 |-  ( A = B -> A = B )
3 2 raleqdv
 |-  ( A = B -> ( A. x e. A x e. B <-> A. x e. B x e. B ) )
4 1 3 mpbiri
 |-  ( A = B -> A. x e. A x e. B )