Description: Equality deduction for restricted universal quantifier. See raleqbidv for a version based on fewer axioms. (Contributed by Thierry Arnoux, 8-Mar-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | raleqbid.0 | |- F/ x ph |
|
| raleqbid.1 | |- F/_ x A |
||
| raleqbid.2 | |- F/_ x B |
||
| raleqbid.3 | |- ( ph -> A = B ) |
||
| raleqbid.4 | |- ( ph -> ( ps <-> ch ) ) |
||
| Assertion | raleqbid | |- ( ph -> ( A. x e. A ps <-> A. x e. B ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqbid.0 | |- F/ x ph |
|
| 2 | raleqbid.1 | |- F/_ x A |
|
| 3 | raleqbid.2 | |- F/_ x B |
|
| 4 | raleqbid.3 | |- ( ph -> A = B ) |
|
| 5 | raleqbid.4 | |- ( ph -> ( ps <-> ch ) ) |
|
| 6 | 2 3 | raleqf | |- ( A = B -> ( A. x e. A ps <-> A. x e. B ps ) ) |
| 7 | 4 6 | syl | |- ( ph -> ( A. x e. A ps <-> A. x e. B ps ) ) |
| 8 | 1 5 | ralbid | |- ( ph -> ( A. x e. B ps <-> A. x e. B ch ) ) |
| 9 | 7 8 | bitrd | |- ( ph -> ( A. x e. A ps <-> A. x e. B ch ) ) |