Description: Equality deduction for restricted universal quantifier. (Contributed by Thierry Arnoux, 8-Mar-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | raleqbid.0 | |- F/ x ph |
|
raleqbid.1 | |- F/_ x A |
||
raleqbid.2 | |- F/_ x B |
||
raleqbid.3 | |- ( ph -> A = B ) |
||
raleqbid.4 | |- ( ph -> ( ps <-> ch ) ) |
||
Assertion | raleqbid | |- ( ph -> ( A. x e. A ps <-> A. x e. B ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqbid.0 | |- F/ x ph |
|
2 | raleqbid.1 | |- F/_ x A |
|
3 | raleqbid.2 | |- F/_ x B |
|
4 | raleqbid.3 | |- ( ph -> A = B ) |
|
5 | raleqbid.4 | |- ( ph -> ( ps <-> ch ) ) |
|
6 | 2 3 | raleqf | |- ( A = B -> ( A. x e. A ps <-> A. x e. B ps ) ) |
7 | 4 6 | syl | |- ( ph -> ( A. x e. A ps <-> A. x e. B ps ) ) |
8 | 1 5 | ralbid | |- ( ph -> ( A. x e. B ps <-> A. x e. B ch ) ) |
9 | 7 8 | bitrd | |- ( ph -> ( A. x e. A ps <-> A. x e. B ch ) ) |