Metamath Proof Explorer


Theorem raleqbidva

Description: Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017)

Ref Expression
Hypotheses raleqbidva.1
|- ( ph -> A = B )
raleqbidva.2
|- ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
Assertion raleqbidva
|- ( ph -> ( A. x e. A ps <-> A. x e. B ch ) )

Proof

Step Hyp Ref Expression
1 raleqbidva.1
 |-  ( ph -> A = B )
2 raleqbidva.2
 |-  ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
3 2 ralbidva
 |-  ( ph -> ( A. x e. A ps <-> A. x e. A ch ) )
4 1 raleqdv
 |-  ( ph -> ( A. x e. A ch <-> A. x e. B ch ) )
5 3 4 bitrd
 |-  ( ph -> ( A. x e. A ps <-> A. x e. B ch ) )