Metamath Proof Explorer


Theorem raleqbidvv

Description: Version of raleqbidv with additional disjoint variable conditions, not requiring ax-8 nor df-clel . (Contributed by BJ, 22-Sep-2024)

Ref Expression
Hypotheses raleqbidvv.1
|- ( ph -> A = B )
raleqbidvv.2
|- ( ph -> ( ps <-> ch ) )
Assertion raleqbidvv
|- ( ph -> ( A. x e. A ps <-> A. x e. B ch ) )

Proof

Step Hyp Ref Expression
1 raleqbidvv.1
 |-  ( ph -> A = B )
2 raleqbidvv.2
 |-  ( ph -> ( ps <-> ch ) )
3 2 adantr
 |-  ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
4 1 3 raleqbidva
 |-  ( ph -> ( A. x e. A ps <-> A. x e. B ch ) )