Metamath Proof Explorer


Theorem raleqbii

Description: Equality deduction for restricted universal quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses raleqbii.1
|- A = B
raleqbii.2
|- ( ps <-> ch )
Assertion raleqbii
|- ( A. x e. A ps <-> A. x e. B ch )

Proof

Step Hyp Ref Expression
1 raleqbii.1
 |-  A = B
2 raleqbii.2
 |-  ( ps <-> ch )
3 1 eleq2i
 |-  ( x e. A <-> x e. B )
4 3 2 imbi12i
 |-  ( ( x e. A -> ps ) <-> ( x e. B -> ch ) )
5 4 ralbii2
 |-  ( A. x e. A ps <-> A. x e. B ch )