Description: Equality deduction for restricted universal quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | raleqbii.1 | |- A = B |
|
raleqbii.2 | |- ( ps <-> ch ) |
||
Assertion | raleqbii | |- ( A. x e. A ps <-> A. x e. B ch ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqbii.1 | |- A = B |
|
2 | raleqbii.2 | |- ( ps <-> ch ) |
|
3 | 1 | eleq2i | |- ( x e. A <-> x e. B ) |
4 | 3 2 | imbi12i | |- ( ( x e. A -> ps ) <-> ( x e. B -> ch ) ) |
5 | 4 | ralbii2 | |- ( A. x e. A ps <-> A. x e. B ch ) |