Description: Equality deduction for restricted universal quantifier. (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | raleqd.a | |- F/_ x A |
|
raleqd.b | |- F/_ x B |
||
raleqd.e | |- ( ph -> A = B ) |
||
Assertion | raleqd | |- ( ph -> ( A. x e. A ps <-> A. x e. B ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqd.a | |- F/_ x A |
|
2 | raleqd.b | |- F/_ x B |
|
3 | raleqd.e | |- ( ph -> A = B ) |
|
4 | 1 2 | raleqf | |- ( A = B -> ( A. x e. A ps <-> A. x e. B ps ) ) |
5 | 3 4 | syl | |- ( ph -> ( A. x e. A ps <-> A. x e. B ps ) ) |