Metamath Proof Explorer


Theorem raleqd

Description: Equality deduction for restricted universal quantifier. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses raleqd.a
|- F/_ x A
raleqd.b
|- F/_ x B
raleqd.e
|- ( ph -> A = B )
Assertion raleqd
|- ( ph -> ( A. x e. A ps <-> A. x e. B ps ) )

Proof

Step Hyp Ref Expression
1 raleqd.a
 |-  F/_ x A
2 raleqd.b
 |-  F/_ x B
3 raleqd.e
 |-  ( ph -> A = B )
4 1 2 raleqf
 |-  ( A = B -> ( A. x e. A ps <-> A. x e. B ps ) )
5 3 4 syl
 |-  ( ph -> ( A. x e. A ps <-> A. x e. B ps ) )