Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 13-Nov-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | raleqdv.1 | |- ( ph -> A = B ) |
|
| Assertion | raleqdv | |- ( ph -> ( A. x e. A ps <-> A. x e. B ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqdv.1 | |- ( ph -> A = B ) |
|
| 2 | raleq | |- ( A = B -> ( A. x e. A ps <-> A. x e. B ps ) ) |
|
| 3 | 1 2 | syl | |- ( ph -> ( A. x e. A ps <-> A. x e. B ps ) ) |