Metamath Proof Explorer


Theorem raleqf

Description: Equality theorem for restricted universal quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004) (Revised by Andrew Salmon, 11-Jul-2011)

Ref Expression
Hypotheses raleq1f.1
|- F/_ x A
raleq1f.2
|- F/_ x B
Assertion raleqf
|- ( A = B -> ( A. x e. A ph <-> A. x e. B ph ) )

Proof

Step Hyp Ref Expression
1 raleq1f.1
 |-  F/_ x A
2 raleq1f.2
 |-  F/_ x B
3 1 2 nfeq
 |-  F/ x A = B
4 eleq2
 |-  ( A = B -> ( x e. A <-> x e. B ) )
5 4 imbi1d
 |-  ( A = B -> ( ( x e. A -> ph ) <-> ( x e. B -> ph ) ) )
6 3 5 albid
 |-  ( A = B -> ( A. x ( x e. A -> ph ) <-> A. x ( x e. B -> ph ) ) )
7 df-ral
 |-  ( A. x e. A ph <-> A. x ( x e. A -> ph ) )
8 df-ral
 |-  ( A. x e. B ph <-> A. x ( x e. B -> ph ) )
9 6 7 8 3bitr4g
 |-  ( A = B -> ( A. x e. A ph <-> A. x e. B ph ) )