Description: Equality inference for restricted universal quantifier. (Contributed by Paul Chapman, 22-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | raleq1i.1 | |- A = B |
|
| Assertion | raleqi | |- ( A. x e. A ph <-> A. x e. B ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq1i.1 | |- A = B |
|
| 2 | raleq | |- ( A = B -> ( A. x e. A ph <-> A. x e. B ph ) ) |
|
| 3 | 1 2 | ax-mp | |- ( A. x e. A ph <-> A. x e. B ph ) |