Metamath Proof Explorer


Theorem raleqi

Description: Equality inference for restricted universal quantifier. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Hypothesis raleq1i.1
|- A = B
Assertion raleqi
|- ( A. x e. A ph <-> A. x e. B ph )

Proof

Step Hyp Ref Expression
1 raleq1i.1
 |-  A = B
2 raleq
 |-  ( A = B -> ( A. x e. A ph <-> A. x e. B ph ) )
3 1 2 ax-mp
 |-  ( A. x e. A ph <-> A. x e. B ph )