Description: Equality inference for restricted universal quantifier. (Contributed by Paul Chapman, 22-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Hypothesis | raleq1i.1 | |- A = B |
|
Assertion | raleqi | |- ( A. x e. A ph <-> A. x e. B ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq1i.1 | |- A = B |
|
2 | raleq | |- ( A = B -> ( A. x e. A ph <-> A. x e. B ph ) ) |
|
3 | 1 2 | ax-mp | |- ( A. x e. A ph <-> A. x e. B ph ) |