Metamath Proof Explorer


Theorem raleqtrdv

Description: Substitution of equal classes into a restricted universal quantifier. (Contributed by Matthew House, 21-Jul-2025)

Ref Expression
Hypotheses raleqtrdv.1
|- ( ph -> A. x e. A ps )
raleqtrdv.2
|- ( ph -> A = B )
Assertion raleqtrdv
|- ( ph -> A. x e. B ps )

Proof

Step Hyp Ref Expression
1 raleqtrdv.1
 |-  ( ph -> A. x e. A ps )
2 raleqtrdv.2
 |-  ( ph -> A = B )
3 2 raleqdv
 |-  ( ph -> ( A. x e. A ps <-> A. x e. B ps ) )
4 1 3 mpbid
 |-  ( ph -> A. x e. B ps )