Description: Substitution of equal classes into a restricted universal quantifier. (Contributed by Matthew House, 21-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | raleqtrdv.1 | |- ( ph -> A. x e. A ps ) |
|
| raleqtrdv.2 | |- ( ph -> A = B ) |
||
| Assertion | raleqtrdv | |- ( ph -> A. x e. B ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqtrdv.1 | |- ( ph -> A. x e. A ps ) |
|
| 2 | raleqtrdv.2 | |- ( ph -> A = B ) |
|
| 3 | 2 | raleqdv | |- ( ph -> ( A. x e. A ps <-> A. x e. B ps ) ) |
| 4 | 1 3 | mpbid | |- ( ph -> A. x e. B ps ) |