Metamath Proof Explorer


Theorem raleqtrrdv

Description: Substitution of equal classes into a restricted universal quantifier. (Contributed by Matthew House, 21-Jul-2025)

Ref Expression
Hypotheses raleqtrrdv.1
|- ( ph -> A. x e. A ps )
raleqtrrdv.2
|- ( ph -> B = A )
Assertion raleqtrrdv
|- ( ph -> A. x e. B ps )

Proof

Step Hyp Ref Expression
1 raleqtrrdv.1
 |-  ( ph -> A. x e. A ps )
2 raleqtrrdv.2
 |-  ( ph -> B = A )
3 2 raleqdv
 |-  ( ph -> ( A. x e. B ps <-> A. x e. A ps ) )
4 1 3 mpbird
 |-  ( ph -> A. x e. B ps )