Description: Substitution of equal classes into a restricted universal quantifier. (Contributed by Matthew House, 21-Jul-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | raleqtrrdv.1 | |- ( ph -> A. x e. A ps ) |
|
raleqtrrdv.2 | |- ( ph -> B = A ) |
||
Assertion | raleqtrrdv | |- ( ph -> A. x e. B ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqtrrdv.1 | |- ( ph -> A. x e. A ps ) |
|
2 | raleqtrrdv.2 | |- ( ph -> B = A ) |
|
3 | 2 | raleqdv | |- ( ph -> ( A. x e. B ps <-> A. x e. A ps ) ) |
4 | 1 3 | mpbird | |- ( ph -> A. x e. B ps ) |