Description: Obsolete version of ralf0 as of 2-Sep-2024. (Contributed by NM, 26-Nov-2005) (Proof shortened by JJ, 14-Jul-2021) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ralf0OLD.1 | |- -. ph |
|
Assertion | ralf0OLD | |- ( A. x e. A ph <-> A = (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralf0OLD.1 | |- -. ph |
|
2 | mtt | |- ( -. ph -> ( -. x e. A <-> ( x e. A -> ph ) ) ) |
|
3 | 1 2 | ax-mp | |- ( -. x e. A <-> ( x e. A -> ph ) ) |
4 | 3 | albii | |- ( A. x -. x e. A <-> A. x ( x e. A -> ph ) ) |
5 | eq0 | |- ( A = (/) <-> A. x -. x e. A ) |
|
6 | df-ral | |- ( A. x e. A ph <-> A. x ( x e. A -> ph ) ) |
|
7 | 4 5 6 | 3bitr4ri | |- ( A. x e. A ph <-> A = (/) ) |