Metamath Proof Explorer


Theorem ralf0OLD

Description: Obsolete version of ralf0 as of 2-Sep-2024. (Contributed by NM, 26-Nov-2005) (Proof shortened by JJ, 14-Jul-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ralf0OLD.1
|- -. ph
Assertion ralf0OLD
|- ( A. x e. A ph <-> A = (/) )

Proof

Step Hyp Ref Expression
1 ralf0OLD.1
 |-  -. ph
2 mtt
 |-  ( -. ph -> ( -. x e. A <-> ( x e. A -> ph ) ) )
3 1 2 ax-mp
 |-  ( -. x e. A <-> ( x e. A -> ph ) )
4 3 albii
 |-  ( A. x -. x e. A <-> A. x ( x e. A -> ph ) )
5 eq0
 |-  ( A = (/) <-> A. x -. x e. A )
6 df-ral
 |-  ( A. x e. A ph <-> A. x ( x e. A -> ph ) )
7 4 5 6 3bitr4ri
 |-  ( A. x e. A ph <-> A = (/) )