Metamath Proof Explorer


Theorem ralim

Description: Distribution of restricted quantification over implication. (Contributed by NM, 9-Feb-1997) (Proof shortened by Wolf Lammen, 1-Dec-2019)

Ref Expression
Assertion ralim
|- ( A. x e. A ( ph -> ps ) -> ( A. x e. A ph -> A. x e. A ps ) )

Proof

Step Hyp Ref Expression
1 id
 |-  ( ( ph -> ps ) -> ( ph -> ps ) )
2 1 ral2imi
 |-  ( A. x e. A ( ph -> ps ) -> ( A. x e. A ph -> A. x e. A ps ) )