Metamath Proof Explorer


Theorem ralimdaa

Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of Margaris p. 90. (Contributed by NM, 22-Sep-2003) (Proof shortened by Wolf Lammen, 29-Dec-2019)

Ref Expression
Hypotheses ralimdaa.1
|- F/ x ph
ralimdaa.2
|- ( ( ph /\ x e. A ) -> ( ps -> ch ) )
Assertion ralimdaa
|- ( ph -> ( A. x e. A ps -> A. x e. A ch ) )

Proof

Step Hyp Ref Expression
1 ralimdaa.1
 |-  F/ x ph
2 ralimdaa.2
 |-  ( ( ph /\ x e. A ) -> ( ps -> ch ) )
3 2 ex
 |-  ( ph -> ( x e. A -> ( ps -> ch ) ) )
4 1 3 ralrimi
 |-  ( ph -> A. x e. A ( ps -> ch ) )
5 ralim
 |-  ( A. x e. A ( ps -> ch ) -> ( A. x e. A ps -> A. x e. A ch ) )
6 4 5 syl
 |-  ( ph -> ( A. x e. A ps -> A. x e. A ch ) )