Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of Margaris p. 90. (Contributed by NM, 22-Sep-2003) (Proof shortened by Wolf Lammen, 29-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ralimdaa.1 | |- F/ x ph |
|
ralimdaa.2 | |- ( ( ph /\ x e. A ) -> ( ps -> ch ) ) |
||
Assertion | ralimdaa | |- ( ph -> ( A. x e. A ps -> A. x e. A ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimdaa.1 | |- F/ x ph |
|
2 | ralimdaa.2 | |- ( ( ph /\ x e. A ) -> ( ps -> ch ) ) |
|
3 | 2 | ex | |- ( ph -> ( x e. A -> ( ps -> ch ) ) ) |
4 | 1 3 | ralrimi | |- ( ph -> A. x e. A ( ps -> ch ) ) |
5 | ralim | |- ( A. x e. A ( ps -> ch ) -> ( A. x e. A ps -> A. x e. A ch ) ) |
|
6 | 4 5 | syl | |- ( ph -> ( A. x e. A ps -> A. x e. A ch ) ) |